前面我们不止一次提到,用多线程优化性能,其实不过就是将串行操作变成并行操作。如果仔细观察,你还会发现在串行转换成并行的过程中,一定会涉及到异步化,例如下面的示例代码,现在是串行的,为了提升性能,我们得把它们并行化。
// 以下两个方法都是耗时操作 doBizA(); doBizB(); //创建两个子线程去执行就可以了,两个操作已经被异步化了。 new Thread(()->doBizA()) .start(); new Thread(()->doBizB()) .start();
异步化
,是并行方案得以实施的基础,更深入地讲其实就是:利用多线程优化性能这个核心方案得以实施的基础
。Java 在 1.8 版本提供了 CompletableFuture 来支持异步编程。
CompletableFuture 的核心优势
为了领略 CompletableFuture 异步编程的优势,这里我们用 CompletableFuture 重新实现前面曾提及的烧水泡茶程序。首先还是需要先完成分工方案,在下面的程序中,我们分了 3 个任务:任务 1 负责洗水壶、烧开水,任务 2 负责洗茶壶、洗茶杯和拿茶叶,任务 3 负责泡茶。其中任务 3 要等待任务 1 和任务 2 都完成后才能开始。这个分工如下图所示。
烧水泡茶分工方案
// 任务 1:洗水壶 -> 烧开水 CompletableFuture<Void> f1 = CompletableFuture.runAsync(()->{ System.out.println("T1: 洗水壶..."); sleep(1,TimeUnit.SECONDS); System.out.println("T1: 烧开水..."); sleep(15,TimeUnit.SECONDS); }); // 任务 2:洗茶壶 -> 洗茶杯 -> 拿茶叶 CompletableFuture<String> f2 = CompletableFuture.supplyAsync(()->{ System.out.println("T2: 洗茶壶..."); sleep(1,TimeUnit.SECONDS); System.out.println("T2: 洗茶杯..."); sleep(2,TimeUnit.SECONDS); System.out.println("T2: 拿茶叶..."); sleep(1,TimeUnit.SECONDS); return " 龙井 "; }); // 任务 3:任务 1 和任务 2 完成后执行:泡茶 CompletableFuture<String> f3 = f1.thenCombine(f2,(__,tf)->{ System.out.println("T1: 拿到茶叶:" + tf); System.out.println("T1: 泡茶..."); return " 上茶:" + tf; }); // 等待任务 3 执行结果 System.out.println(f3.join()); void sleep(int t,TimeUnit u) { try { u.sleep(t); }catch(InterruptedException e){} } // 一次执行结果: T1: 洗水壶... T2: 洗茶壶... T1: 烧开水... T2: 洗茶杯... T2: 拿茶叶... T1: 拿到茶叶: 龙井 T1: 泡茶... 上茶: 龙井
从整体上来看,我们会发现
- 无需手工维护线程,没有繁琐的手工维护线程的工作,给任务分配线程的工作也不需要我们关注;
- 语义更清晰,例如
f3 = f1.thenCombine(f2,()->{})
能够清晰地表述“任务 3 要等待任务 1 和任务 2 都完成后才能开始”; - 代码更简练并且专注于业务逻辑,几乎所有代码都是业务逻辑相关的。
领略 CompletableFuture 异步编程的优势之后,下面我们详细介绍 CompletableFuture 的使用。
创建 CompletableFuture 对象
创建 CompletableFuture 对象主要靠下面代码中展示的这 4 个静态方法,我们先看前两个。在烧水泡茶的例子中,我们已经使用了runAsync(Runnable runnable)
和 supplyAsync(Supplier<U> supplier)
,它们之间的区别是:Runnable 接口的 run() 方法没有返回值,而 Supplier 接口的 get() 方法是有返回值的。
前两个方法和后两个方法的区别在于:后两个方法可以指定线程池参数。
默认情况下 CompletableFuture 会使用公共的 ForkJoinPool 线程池,这个线程池默认创建的线程数是 cpu 的核数(也可以通过 JVM option:-Djava.util.concurrent.ForkJoinPool.common.parallelism
来设置 ForkJoinPool 线程池的线程数)。如果所有 CompletableFuture 共享一个线程池,那么一旦有任务执行一些很慢的 I/O 操作,就会导致线程池中所有线程都阻塞在 I/O 操作上,从而造成线程饥饿,进而影响整个系统的性能。所以,强烈建议你要根据不同的业务类型创建不同的线程池,以避免互相干扰
。
// 使用默认线程池 static CompletableFuture<Void> runAsync(Runnable runnable) static <U> CompletableFuture<U> supplyAsync(Supplier<U> supplier) // 可以指定线程池 static CompletableFuture<Void> runAsync(Runnable runnable,Executor executor) static <U> CompletableFuture<U> supplyAsync(Supplier<U> supplier,Executor executor)
创建完 CompletableFuture 对象之后,会自动地异步执行 runnable.run() 方法或者 supplier.get() 方法,对于一个异步操作,你需要关注两个问题:一个是异步操作什么时候结束,另一个是如何获取异步操作的执行结果。因为 CompletableFuture 类实现了 Future 接口,所以这两个问题你都可以通过 Future 接口来解决。另外,CompletableFuture 类还实现了 CompletionStage 接口,这个接口内容实在是太丰富了,在 1.8 版本里有 40 个方法,这些方法我们该如何理解呢?
理解 CompletionStage 接口
可以站在分工的角度类比一下工作流。任务是有时序关系的,比如有串行关系、并行关系、汇聚关系
等。这样说可能有点抽象,这里还举前面烧水泡茶的例子,其中洗水壶和烧开水就是串行关系,洗水壶、烧开水和洗茶壶、洗茶杯这两组任务之间就是并行关系,而烧开水、拿茶叶和泡茶就是汇聚关系。
串行关系
并行关系
汇聚关系
CompletionStage 接口可以清晰地描述任务之间的这种时序关系,例如前面提到的
f3 = f1.thenCombine(f2,()->{})
描述的就是一种汇聚关系。烧水泡茶程序中的汇聚关系是一种 AND 聚合关系,这里的 AND 指的是所有依赖的任务(烧开水和拿茶叶)都完成后才开始执行当前任务(泡茶)。既然有 AND 聚合关系,那就一定还有 OR 聚合关系,所谓 OR 指的是依赖的任务只要有一个完成就可以执行当前任务。
最后就是异常,CompletionStage 接口也可以方便地描述异常处理。
下面我们就来一一介绍,CompletionStage 接口如何描述串行关系、AND 聚合关系、OR 聚合关系以及异常处理。
1. 描述串行关系
CompletionStage 接口里面描述串行关系,主要是 thenApply、thenAccept、thenRun 和 thenCompose 这四个系列的接口。
thenApply 系列函数里参数 fn 的类型是接口 Function<T,R>,这个接口里与 CompletionStage 相关的方法是R apply(T t)
,这个方法既能接收参数也支持返回值,所以 thenApply 系列方法返回的是CompletionStage<R>
。
而 thenAccept 系列方法里参数 consumer 的类型是接口Consumer<T>
,这个接口里与 CompletionStage 相关的方法是void accept(T t)
,这个方法虽然支持参数,但却不支持回值,所以 thenAccept 系列方法返回的是CompletionStage<Void>
thenRun 系列方法里 action 的参数是 Runnable,所以 action 既不能接收参数也不支持返回值,所以 thenRun 系列方法返回的也是CompletionStage<Void>
这些方法里面 Async 代表的是异步执行 fn、consumer 或者 action。其中,需要你注意的是 thenCompose 系列方法,这个系列的方法会新创建出一个子流程,最终结果和 thenApply 系列是相同的。
CompletionStage<R> thenApply(fn); CompletionStage<R> thenApplyAsync(fn); CompletionStage<Void> thenAccept(consumer); CompletionStage<Void> thenAcceptAsync(consumer); CompletionStage<Void> thenRun(action); CompletionStage<Void> thenRunAsync(action); CompletionStage<R> thenCompose(fn); CompletionStage<R> thenComposeAsync(fn);
通过下面的示例代码,你可以看一下 thenApply() 方法是如何使用的。首先通过 supplyAsync() 启动一个异步流程,之后是两个串行操作,整体看起来还是挺简单的。不过,虽然这是一个异步流程,但任务①②③却是串行执行的,②依赖①的执行结果,③依赖②的执行结果。
CompletableFuture<String> f0 = CompletableFuture.supplyAsync( () -> "Hello World") //① .thenApply(s -> s + " QQ") //② .thenApply(String::toUpperCase);//③ System.out.println(f0.join()); // 输出结果 HELLO WORLD QQ
2. 描述 AND 汇聚关系
CompletionStage 接口里面描述 AND 汇聚关系,主要是 thenCombine、thenAcceptBoth 和 runAfterBoth 系列的接口,这些接口的区别也是源自 fn、consumer、action 这三个核心参数不同。
CompletionStage<R> thenCombine(other,fn); CompletionStage<R> thenCombineAsync(other,fn); CompletionStage<Void> thenAcceptBoth(other,consumer); CompletionStage<Void> thenAcceptBothAsync(other,consumer); CompletionStage<Void> runAfterBoth(other,action); CompletionStage<Void> runAfterBothAsync(other,action);
3. 描述 OR 汇聚关系
CompletionStage 接口里面描述 OR 汇聚关系,主要是 applyToEither、acceptEither 和 runAfterEither 系列的接口,这些接口的区别也是源自 fn、consumer、action 这三个核心参数不同。
CompletionStage applyToEither(other,fn); CompletionStage applyToEitherAsync(other,fn); CompletionStage acceptEither(other,consumer); CompletionStage acceptEitherAsync(other,consumer); CompletionStage runAfterEither(other,action); CompletionStage runAfterEitherAsync(other,action);
CompletableFuture<String> f1 = CompletableFuture.supplyAsync(()->{ int t = getRandom(5,10); sleep(t,TimeUnit.SECONDS); return String.valueOf(t); }); CompletableFuture<String> f2 = CompletableFuture.supplyAsync(()->{ int t = getRandom(5,TimeUnit.SECONDS); return String.valueOf(t); }); CompletableFuture<String> f3 = f1.applyToEither(f2,s -> s); System.out.println(f3.join());
4. 异常处理
虽然上面我们提到的 fn、consumer、action 它们的核心方法都不允许抛出可检查异常,但是却无法限制它们抛出运行时异常
,例如下面的代码,执行
CompletableFuture<Integer> f0 = CompletableFuture. .supplyAsync(()->(7/0)) .thenApply(r->r*10); System.out.println(f0.join());
CompletionStage 接口给我们提供的方案非常简单,比 try{}catch{}还要简单,下面是相关的方法,使用这些方法进行异常处理和串行操作是一样的,都支持链式编程方式。
CompletionStage exceptionally(fn); CompletionStage<R> whenComplete(consumer); CompletionStage<R> whenCompleteAsync(consumer); CompletionStage<R> handle(fn); CompletionStage<R> handleAsync(fn);
下面的示例代码展示了如何使用 exceptionally() 方法来处理异常,exceptionally() 的使用非常类似于 try{}catch{}中的 catch{},但是由于支持链式编程方式,所以相对更简单。
whenComplete() 和 handle() 系列方法就类似于 try{}finally{}中的 finally{},无论是否发生异常都会执行 whenComplete() 中的回调函数 consumer 和 handle() 中的回调函数 fn。
whenComplete() 和 handle() 的区别在于 whenComplete() 不支持返回结果,而 handle() 是支持返回结果的。
CompletableFuture<Integer> f0 = CompletableFuture .supplyAsync(()->7/0)) .thenApply(r->r*10) .exceptionally(e->0); System.out.println(f0.join());
总结
不过最近几年,伴随着 ReactiveX
的发展(Java 语言的实现版本是 RxJava),回调地狱已经被完美解决了,Java 语言也开始官方支持异步编程:在 1.8 版本提供了 CompletableFuture,在 Java 9 版本则提供了更加完备的 Flow API,异步编程目前已经完全工业化。
CompletableFuture 已经能够满足简单的异步编程需求,如果你对异步编程感兴趣,可以重点关注 RxJava 这个项目,利用 RxJava,即便在 Java 1.6 版本也能享受异步编程的乐趣。