Java并发 CompletableFuture异步编程的实现

前端之家收集整理的这篇文章主要介绍了Java并发 CompletableFuture异步编程的实现前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。

前面我们不止一次提到,用多线程优化性能,其实不过就是将串行操作变成并行操作。如果仔细观察,你还会发现在串行转换成并行的过程中,一定会涉及到异步化,例如下面的示例代码,现在是串行的,为了提升性能,我们得把它们并行化。

// 以下两个方法都是耗时操作
doBizA();
doBizB();

//创建两个子线程去执行就可以了,两个操作已经被异步化了。
new Thread(()->doBizA())
 .start();
new Thread(()->doBizB())
 .start(); 

异步化,是并行方案得以实施的基础,更深入地讲其实就是:利用多线程优化性能这个核心方案得以实施的基础。Java 在 1.8 版本提供了 CompletableFuture支持异步编程。

CompletableFuture 的核心优势

为了领略 CompletableFuture 异步编程的优势,这里我们用 CompletableFuture 重新实现前面曾提及的烧水泡茶程序。首先还是需要先完成分工方案,在下面的程序中,我们分了 3 个任务:任务 1 负责洗水壶、烧开水,任务 2 负责洗茶壶、洗茶杯和拿茶叶,任务 3 负责泡茶。其中任务 3 要等待任务 1 和任务 2 都完成后才能开始。这个分工如下图所示。

Java并发 CompletableFuture异步编程的实现


烧水泡茶分工方案

// 任务 1:洗水壶 -> 烧开水
CompletableFuture<Void> f1 =
 CompletableFuture.runAsync(()->{
 System.out.println("T1: 洗水壶...");
 sleep(1,TimeUnit.SECONDS);

 System.out.println("T1: 烧开水...");
 sleep(15,TimeUnit.SECONDS);
});
// 任务 2:洗茶壶 -> 洗茶杯 -> 拿茶叶
CompletableFuture<String> f2 =
 CompletableFuture.supplyAsync(()->{
 System.out.println("T2: 洗茶壶...");
 sleep(1,TimeUnit.SECONDS);

 System.out.println("T2: 洗茶杯...");
 sleep(2,TimeUnit.SECONDS);

 System.out.println("T2: 拿茶叶...");
 sleep(1,TimeUnit.SECONDS);
 return " 龙井 ";
});
// 任务 3:任务 1 和任务 2 完成后执行:泡茶
CompletableFuture<String> f3 =
 f1.thenCombine(f2,(__,tf)->{
  System.out.println("T1: 拿到茶叶:" + tf);
  System.out.println("T1: 泡茶...");
  return " 上茶:" + tf;
 });
// 等待任务 3 执行结果
System.out.println(f3.join());

void sleep(int t,TimeUnit u) {
 try {
  u.sleep(t);
 }catch(InterruptedException e){}
}
// 一次执行结果:
T1: 洗水壶...
T2: 洗茶壶...
T1: 烧开水...
T2: 洗茶杯...
T2: 拿茶叶...
T1: 拿到茶叶: 龙井
T1: 泡茶...
上茶: 龙井

从整体上来看,我们会发现

  • 无需手工维护线程,没有繁琐的手工维护线程的工作,给任务分配线程的工作也不需要我们关注;
  • 语义更清晰,例如f3 = f1.thenCombine(f2,()->{}) 能够清晰地表述“任务 3 要等待任务 1 和任务 2 都完成后才能开始”;
  • 代码更简练并且专注于业务逻辑,几乎所有代码都是业务逻辑相关的。

领略 CompletableFuture 异步编程的优势之后,下面我们详细介绍 CompletableFuture 的使用。

创建 CompletableFuture 对象

创建 CompletableFuture 对象主要靠下面代码中展示的这 4 个静态方法,我们先看前两个。在烧水泡茶的例子中,我们已经使用了runAsync(Runnable runnable)supplyAsync(Supplier<U> supplier),它们之间的区别是:Runnable 接口的 run() 方法没有返回值,而 Supplier 接口的 get() 方法是有返回值的。

前两个方法和后两个方法的区别在于:后两个方法可以指定线程池参数。

默认情况下 CompletableFuture 会使用公共的 ForkJoinPool 线程池,这个线程池默认创建的线程数是 cpu 的核数(也可以通过 JVM option:-Djava.util.concurrent.ForkJoinPool.common.parallelism 来设置 ForkJoinPool 线程池的线程数)。如果所有 CompletableFuture 共享一个线程池,那么一旦有任务执行一些很慢的 I/O 操作,就会导致线程池中所有线程都阻塞在 I/O 操作上,从而造成线程饥饿,进而影响整个系统的性能。所以,强烈建议你要根据不同的业务类型创建不同的线程池,以避免互相干扰

// 使用默认线程池
static CompletableFuture<Void>
 runAsync(Runnable runnable)
static <U> CompletableFuture<U>
 supplyAsync(Supplier<U> supplier)
// 可以指定线程池
static CompletableFuture<Void>
 runAsync(Runnable runnable,Executor executor)
static <U> CompletableFuture<U>
 supplyAsync(Supplier<U> supplier,Executor executor) 

创建完 CompletableFuture 对象之后,会自动地异步执行 runnable.run() 方法或者 supplier.get() 方法,对于一个异步操作,你需要关注两个问题:一个是异步操作什么时候结束,另一个是如何获取异步操作的执行结果。因为 CompletableFuture 类实现了 Future 接口,所以这两个问题你都可以通过 Future 接口来解决。另外,CompletableFuture 类还实现了 CompletionStage 接口,这个接口内容实在是太丰富了,在 1.8 版本里有 40 个方法,这些方法我们该如何理解呢?

理解 CompletionStage 接口

可以站在分工的角度类比一下工作流。任务是有时序关系的,比如有串行关系、并行关系、汇聚关系等。这样说可能有点抽象,这里还举前面烧水泡茶的例子,其中洗水壶和烧开水就是串行关系,洗水壶、烧开水和洗茶壶、洗茶杯这两组任务之间就是并行关系,而烧开水、拿茶叶和泡茶就是汇聚关系。

Java并发 CompletableFuture异步编程的实现


串行关系

Java并发 CompletableFuture异步编程的实现


并行关系

Java并发 CompletableFuture异步编程的实现


汇聚关系

CompletionStage 接口可以清晰地描述任务之间的这种时序关系,例如前面提到的
f3 = f1.thenCombine(f2,()->{}) 描述的就是一种汇聚关系。烧水泡茶程序中的汇聚关系是一种 AND 聚合关系,这里的 AND 指的是所有依赖的任务(烧开水和拿茶叶)都完成后才开始执行当前任务(泡茶)。既然有 AND 聚合关系,那就一定还有 OR 聚合关系,所谓 OR 指的是依赖的任务只要有一个完成就可以执行当前任务。

最后就是异常,CompletionStage 接口也可以方便地描述异常处理。

下面我们就来一一介绍,CompletionStage 接口如何描述串行关系、AND 聚合关系、OR 聚合关系以及异常处理。

1. 描述串行关系

CompletionStage 接口里面描述串行关系,主要是 thenApply、thenAccept、thenRun 和 thenCompose 这四个系列的接口。

thenApply 系列函数里参数 fn 的类型是接口 Function<T,R>,这个接口里与 CompletionStage 相关的方法R apply(T t),这个方法既能接收参数也支持返回值,所以 thenApply 系列方法返回的是CompletionStage<R>

而 thenAccept 系列方法里参数 consumer 的类型是接口Consumer<T>,这个接口里与 CompletionStage 相关的方法void accept(T t),这个方法虽然支持参数,但却不支持回值,所以 thenAccept 系列方法返回的是CompletionStage<Void>

thenRun 系列方法里 action 的参数是 Runnable,所以 action 既不能接收参数也不支持返回值,所以 thenRun 系列方法返回的也是CompletionStage<Void>

这些方法里面 Async 代表的是异步执行 fn、consumer 或者 action。其中,需要你注意的是 thenCompose 系列方法,这个系列的方法会新创建出一个子流程,最终结果和 thenApply 系列是相同的。

CompletionStage<R> thenApply(fn);
CompletionStage<R> thenApplyAsync(fn);
CompletionStage<Void> thenAccept(consumer);
CompletionStage<Void> thenAcceptAsync(consumer);
CompletionStage<Void> thenRun(action);
CompletionStage<Void> thenRunAsync(action);
CompletionStage<R> thenCompose(fn);
CompletionStage<R> thenComposeAsync(fn);

通过下面的示例代码,你可以看一下 thenApply() 方法是如何使用的。首先通过 supplyAsync() 启动一个异步流程,之后是两个串行操作,整体看起来还是挺简单的。不过,虽然这是一个异步流程,但任务①②③却是串行执行的,②依赖①的执行结果,③依赖②的执行结果。

CompletableFuture<String> f0 =
 CompletableFuture.supplyAsync(
  () -> "Hello World")   //①
 .thenApply(s -> s + " QQ") //②
 .thenApply(String::toUpperCase);//③

System.out.println(f0.join());
// 输出结果
HELLO WORLD QQ

2. 描述 AND 汇聚关系

CompletionStage 接口里面描述 AND 汇聚关系,主要是 thenCombine、thenAcceptBoth 和 runAfterBoth 系列的接口,这些接口的区别也是源自 fn、consumer、action 这三个核心参数不同。

CompletionStage<R> thenCombine(other,fn);
CompletionStage<R> thenCombineAsync(other,fn);
CompletionStage<Void> thenAcceptBoth(other,consumer);
CompletionStage<Void> thenAcceptBothAsync(other,consumer);
CompletionStage<Void> runAfterBoth(other,action);
CompletionStage<Void> runAfterBothAsync(other,action);

3. 描述 OR 汇聚关系

CompletionStage 接口里面描述 OR 汇聚关系,主要是 applyToEither、acceptEither 和 runAfterEither 系列的接口,这些接口的区别也是源自 fn、consumer、action 这三个核心参数不同。

CompletionStage applyToEither(other,fn);
CompletionStage applyToEitherAsync(other,fn);
CompletionStage acceptEither(other,consumer);
CompletionStage acceptEitherAsync(other,consumer);
CompletionStage runAfterEither(other,action);
CompletionStage runAfterEitherAsync(other,action);
CompletableFuture<String> f1 =
 CompletableFuture.supplyAsync(()->{
  int t = getRandom(5,10);
  sleep(t,TimeUnit.SECONDS);
  return String.valueOf(t);
});

CompletableFuture<String> f2 =
 CompletableFuture.supplyAsync(()->{
  int t = getRandom(5,TimeUnit.SECONDS);
  return String.valueOf(t);
});

CompletableFuture<String> f3 =
 f1.applyToEither(f2,s -> s);

System.out.println(f3.join());

4. 异常处理

虽然上面我们提到的 fn、consumer、action 它们的核心方法不允许抛出可检查异常,但是却无法限制它们抛出运行时异常 ,例如下面的代码,执行

CompletableFuture<Integer>
 f0 = CompletableFuture.
  .supplyAsync(()->(7/0))
  .thenApply(r->r*10);
System.out.println(f0.join());

CompletionStage 接口给我们提供的方案非常简单,比 try{}catch{}还要简单,下面是相关的方法,使用这些方法进行异常处理和串行操作是一样的,都支持链式编程方式。

CompletionStage exceptionally(fn);
CompletionStage<R> whenComplete(consumer);
CompletionStage<R> whenCompleteAsync(consumer);
CompletionStage<R> handle(fn);
CompletionStage<R> handleAsync(fn);

下面的示例代码展示了如何使用 exceptionally() 方法来处理异常,exceptionally() 的使用非常类似于 try{}catch{}中的 catch{},但是由于支持链式编程方式,所以相对更简单。

whenComplete() 和 handle() 系列方法就类似于 try{}finally{}中的 finally{},无论是否发生异常都会执行 whenComplete() 中的回调函数 consumer 和 handle() 中的回调函数 fn。

whenComplete() 和 handle() 的区别在于 whenComplete() 不支持返回结果,而 handle() 是支持返回结果的。

CompletableFuture<Integer>
 f0 = CompletableFuture
  .supplyAsync(()->7/0))
  .thenApply(r->r*10)
  .exceptionally(e->0);
System.out.println(f0.join());

总结

不过最近几年,伴随着 ReactiveX 的发展(Java 语言的实现版本是 RxJava),回调地狱已经被完美解决了,Java 语言也开始官方支持异步编程:在 1.8 版本提供了 CompletableFuture,在 Java 9 版本则提供了更加完备的 Flow API,异步编程目前已经完全工业化。

CompletableFuture 已经能够满足简单的异步编程需求,如果你对异步编程感兴趣,可以重点关注 RxJava 这个项目,利用 RxJava,即便在 Java 1.6 版本也能享受异步编程的乐趣。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

猜你在找的Java相关文章