本文为博客园作者所写: 一寸HUI,个人博客地址:https://www.cnblogs.com/zsql/
简单的一个类就直接说了。LinkedList 的底层结构是一个带头/尾指针的双向链表,可以快速的对头/尾节点 进行操作,它允许插 入所有元素,包括 null。 相比数组(这里可以对比ArrayList源码分析进行查看),链表的特点就是在指定位置插入和删除元素的效率较高,但是查找的 效率就不如数组那么高了。如果熟悉双向链表这个数据结构,其实就很简单了,无非就是实现一些数据的添加,删除,查询,遍历等功能,双向链表的结构图如下:
每一个数据(节点)都包含3个部分,一个是数据本身item,一个是指向下一个节点的next指针,还有就是指向上一个节点的prev指针,另外,双向链表还有一个 first 指针,指向头节点,和 last 指针,指向尾节点。,在LinkedList类中通过私有的静态内部类Node作为每一个数据的封装。具体实现如下:
- private static class Node<E> { //这个类就是用来封装双向链表中的每一个数据,也是上图中的每一个框
- E item;
- Node<E> next;
- Node<E> prev;
- Node(Node<E> prev,E element,Node<E> next) {
- this.item = element;
- this.next = next;
- this.prev = prev;
- }
- }
接下看看LinkList类的定义:
- public class LinkedList<E>
- extends AbstractSequentialList<E> //继承的类
- implements List<E>,Deque<E>,Cloneable,java.io.Serializable //实现的各种接口
- {}
接下来看看LinkedList这个类的一些属性:就三个属性,一个用来记录双向链表的大小,一个是first节点用来指向链表的头,last用来指向链表的尾
- transient int size = 0;
- /**
- * Pointer to first node.
- * Invariant: (first == null && last == null) ||
- * (first.prev == null && first.item != null)
- */
- transient Node<E> first;
- * Pointer to last node.
- * Invariant: (first == null && last == null) ||
- * (last.next == null && last.item != null)
- transient Node<E> last;
在看看构造方法:
- * Constructs an empty list.
- public LinkedList() { //空参构造
- }
- * Constructs a list containing the elements of the specified
- * collection,in the order they are returned by the collection's
- * iterator.
- *
- * @param c the collection whose elements are to be placed into this list
- * @throws NullPointerException if the specified collection is null
- public LinkedList(Collection<? extends E> c) { //通过已有的集合进行构造
- this();
- addAll(c); //使用addAll()方法把集合中的数据生产LinkedList
- }
- boolean addAll(Collection<? c) {
- return addAll(size,c);
- }
- boolean addAll(int index,Collection<? c) {
- checkPositionIndex(index);
- Object[] a = c.toArray(); //把集合转为数组
- int numNew = a.length;
- if (numNew == 0)
- return false;
- Node<E> pred,succ;
- if (index == size) {
- succ = null;
- pred = last;
- } else {
- succ = node(index);
- pred = succ.prev;
- }
- for (Object o : a) { //对数组进行遍历,对每一个元素都封装成Node并添加到LinkedList中
- @SuppressWarnings("unchecked") E e = (E) o;
- Node<E> newNode = new Node<>(pred,e,);
- if (pred == )
- first = newNode;
- pred.next = newNode;
- pred = newNode;
- }
- if (succ == ) {
- last = pred;
- } {
- pred.next = succ;
- succ.prev = pred;
- }
- size += numNew;
- modCount++;
- true;
- }
接下来看看LinkedList的基本操作,添加,删除,遍历,查询等
先看添加,从双向链表的结构来看,添加元素可以在链表的头、尾、以及中间的任意位置添加新的元素。因为 LinkedList 有头指针和尾指针,所以在表头或表尾进 行插入元素只需要 O(1) 的时间,而在指定位置插入元素则需要先遍历一下链表, 所以复杂度为 O(n)。首先看看在头部添加元素:
看图可以看出,只要把first指向新的node,新的node的next指向原先firt指向的node,再把原先first指向的node的prev指向新的node就可以了。
在看看在尾部添加,其实和在头部添加一样,只是把first换成了last,逻辑一样
- * Links e as last element.
- linkLast(E e) {
- final Node<E> l = last;
- new Node<>(l,1)">);
- last =if (l == )
- first =
- l.next = newNode;
- size++;
- modCount++;
- }
再看看在中间的任意位置添加:
这个相对来说复杂点点,修改添加前后node的next和prev的指向,修改的相对来说多点点
- * Inserts element e before non-null Node succ.
- void linkBefore(E e,1)"> succ) { //表示在在succ节点前面添加e元素
- // assert succ != null;
- final Node<E> pred = succ.prev; //获取succ的前面节点
- new Node<>(pred,succ); //把e封装成节点,并把prev指向succ前面节点,把next指向succ节点
- succ.prev = newNode; //然后把succ的prev指向新的节点
- pred.next = newNode; //把succ的前节点的next只想新的节点
- size++; //链表长度+1
- modCount++; //修改次数+1
- }
先看看从first位置删除
- * Unlinks non-null first node f.
- private E unlinkFirst(Node<E> f) {
- assert f == first && f != null;
- final E element = f.item; //获取first中间的元素,用于后面的返回
- final Node<E> next = f.next; //获取f的next节点
- f.item = ;
- f.next = null; help GC 清除
- first = next; //把first指向f的next
- if (next == )
- last =
- next.prev = ; //清除
- size--; //链表长度-1
- modCount++; //修改次数+1
- element;
- }
- * Unlinks non-null last node l.
- private E unlinkLast(Node<E> l) {
- assert l == last && l != null;
- l.item;
- final Node<E> prev = l.prev;
- l.item = ;
- l.prev = help GC
- last = prev;
- if (prev == )
- first =
- prev.next = ;
- size-- element;
- }
在看看从指定位置删除吧
- * Unlinks non-null node x.
- */
- E unlink(Node<E> x) {
- assert x != null;
- x.item; //获取该节点的值
- x.next; //获取该节点的next节点
- x.prev; //获取该节点的prev节点
- ) { //把该节点的前节点的next指向该节点的next节点,并清除该节点的prev指向
- first = next;
- } {
- prev.next = next;
- x.prev = ;
- }
- ) { //把该节点的next节点的prev指向该节点的prev节点,并清除该节点的next指向
- last = prev;
- } {
- next.prev = prev;
- x.next = ;
- }
- x.item = ; //清除
- size-- element;
- }
看完增删,那就继续看查相关的方法,也有从头,尾相关的查询方法,都很简单,做判断,然后查询
- * Returns the first element in this list.
- *
- * @return the first element in this list
- * NoSuchElementException if this list is empty
- E getFirst() {
- first;
- throw new NoSuchElementException();
- f.item;
- }
- * Returns the last element in this list.
- *
- * the last element in this list
- * E getLast() {
- l.item;
- }
当然还有指定index查询的
- * Returns the (non-null) Node at the specified element index.
- Node<E> node(int index) {
- assert isElementIndex(index);
- //判断index是在链表的前半段还是在后半段,如果在前半段就从first向后遍历,否则使用last向前遍历
- if (index < (size >> 1)) {
- Node<E> x = first;
- for (int i = 0; i < index; i++)
- x = x.next;
- x;
- } {
- Node<E> x = last;
- int i = size - 1; i > index; i-- x.prev;
- x;
- }
- }
其实基本知道了上面的方法基本对双向链表有了一定的熟悉,当然LinkedList还有很多其他的方法,不过很多都是基于上面这些方法的一些封装,例如:
- * Inserts the specified element at the beginning of this list.
- *
- * e the element to add
- addFirst(E e) {
- linkFirst(e);
- }
- * Appends the specified element to the end of this list.
- *
- * <p>This method is equivalent to {@link #add}.
- *
- * addLast(E e) {
- linkLast(e);
- }
- * Removes and returns the first element from this list.
- *
- * the first element from this list
- * E removeFirst() {
- unlinkFirst(f);
- }
- * Removes and returns the last element from this list.
- *
- * the last element from this list
- * E removeLast() {
- unlinkLast(l);
- }
- #addLast}.
- *
- * e element to be appended to this list
- * {@code true} (as specified by { Collection#add})
- boolean add(E e) {
- linkLast(e);
- ;
- }
- * Removes the first occurrence of the specified element from this list,* if it is present. If this list does not contain the element,it is
- * unchanged. More formally,removes the element with the lowest index
- * { i} such that
- * <tt>(o==null ? get(i)==null : o.equals(get(i)))</tt>
- * (if such an element exists). Returns { true} if this list
- * contained the specified element (or equivalently,if this list
- * changed as a result of the call).
- *
- * o element to be removed from this list,if present
- * true} if this list contained the specified element
- remove(Object o) {
- if (o == ) {
- for (Node<E> x = first; x != null; x = x.next) {
- if (x.item == ) {
- unlink(x);
- ;
- }
- }
- } {
- if (o.equals(x.item)) {
- unlink(x);
- ;
- }
- }
- }
- * Removes all of the elements from this list.
- * The list will be empty after this call returns.
- clear() {
- Clearing all of the links between nodes is "unnecessary",but:
- - helps a generational GC if the discarded nodes inhabit
- more than one generation
- - is sure to free memory even if there is a reachable Iterator
- ; ) {
- Node<E> next = x.next;
- x.item = ;
- x.next = ;
- x.prev = ;
- x = next;
- }
- first = last = ;
- size = 0
- * Removes the element at the specified position in this list. Shifts any
- * subsequent elements to the left (subtracts one from their indices).
- * Returns the element that was removed from the list.
- *
- * index the index of the element to be removed
- * the element prevIoUsly at the specified position
- * IndexOutOfBoundsException {@inheritDoc}
- public E remove( index) {
- checkElementIndex(index);
- unlink(node(index));
- }
- * Returns the index of the first occurrence of the specified element
- * in this list,or -1 if this list does not contain the element.
- * More formally,returns the lowest index { i} such that
- * <tt>(o==null ? get(i)==null : o.equals(get(i)))</tt>,* or -1 if there is no such index.
- *
- * o element to search for
- * the index of the first occurrence of the specified element in
- * this list,or -1 if this list does not contain the element
- indexOf(Object o) { //查找元素o是否在链表中,并返回index,没找到返回-1
- int index = 0)
- index;
- index++;
- }
- } (o.equals(x.item))
- ;
- }
- }
- return -1;
- }
到这里本文就结束了了,如果想知道LinkedList的更多方法,建议去看源码