【tensorflow2.0】特征列feature_column

前端之家收集整理的这篇文章主要介绍了【tensorflow2.0】特征列feature_column前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。

特征列 通常用于对结构化数据实施特征工程时候使用,图像或者文本数据一般不会用到特征列。

一,特征列用法概述

使用特征列可以将类别特征转换为one-hot编码特征,将连续特征构建分桶特征,以及对多个特征生成交叉特征等等。

要创建特征列,请调用 tf.feature_column 模块的函数。该模块中常用的九个函数如下图所示,所有九个函数都会返回一个 Categorical-Column 或一个 Dense-Column 对象,但却不会返回 bucketized_column,后者继承自这两个类。

注意:所有的Catogorical Column类型最终都要通过indicator_column转换成Dense Column类型才能传入模型!

  • numeric_column 数值列,最常用。
  • bucketized_column 分桶列,由数值列生成,可以由一个数值列出多个特征,one-hot编码。
  • categorical_column_with_identity 分类标识列,one-hot编码,相当于分桶列每个桶为1个整数的情况。
  • categorical_column_with_vocabulary_list 分类词汇列,one-hot编码,由list指定词典。
  • categorical_column_with_vocabulary_file 分类词汇列,由文件file指定词典。
  • categorical_column_with_hash_bucket 哈希列,整数或词典较大时采用。
  • indicator_column 指标列,由Categorical Column生成,one-hot编码
  • embedding_column 嵌入列,由Categorical Column生成,嵌入矢量分布参数需要学习。嵌入矢量维数建议取类别数量的 4 次方根。
  • crossed_column 交叉列,可以由除categorical_column_with_hash_bucket的任意分类列构成。

二,特征列使用范例

以下是一个使用特征列解决Titanic生存问题的完整范例。

import datetime
 numpy as np
 pandas as pd
from matplotlib  pyplot as plt
 tensorflow as tf
from tensorflow.keras  layers,models
 
 
# 打印日志
def printlog(info):
    nowtime = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
    print("\n"+=========="*8 + %s"%nowtime)
    print(info+...\n\n)
 
 
 
 ================================================================================
# 一,构建数据管道 ================================================================================
printlog(step1: prepare dataset...")
 
 
dftrain_raw = pd.read_csv(./data/titanic/train.csv)
dftest_raw = pd.read_csv(./data/titanic/test.csv)
 
dfraw = pd.concat([dftrain_raw,dftest_raw])
 
 prepare_dfdata(dfraw):
    dfdata = dfraw.copy()
    dfdata.columns = [x.lower() for x in dfdata.columns]
    dfdata = dfdata.rename(columns={survived':label})
    dfdata = dfdata.drop([passengerid',name'],axis = 1for col,dtype  dict(dfdata.dtypes).items():
         判断是否包含缺失值
        if dfdata[col].hasnans:
             添加标识是否缺失列
            dfdata[col + _nan'] = pd.isna(dfdata[col]).astype(int32)
             填充
            if dtype not  [np.object,np.str,np.unicode]:
                dfdata[col].fillna(dfdata[col].mean(),inplace = True)
            else:
                dfdata[col].fillna('',inplace = True)
    return(dfdata)
 
dfdata = prepare_dfdata(dfraw)
dftrain = dfdata.iloc[0:len(dftrain_raw),:]
dftest = dfdata.iloc[len(dftrain_raw):,:]
 
 
 
 从 dataframe 导入数据 
def df_to_dataset(df,shuffle=True,batch_size=32):
    dfdata = df.copy()
    if '  dfdata.columns:
        ds = tf.data.Dataset.from_tensor_slices(dfdata.to_dict(orient = list))
    : 
        labels = dfdata.pop()
        ds = tf.data.Dataset.from_tensor_slices((dfdata.to_dict(orient = ),labels))  
     shuffle:
        ds = ds.shuffle(buffer_size=len(dfdata))
    ds = ds.batch(batch_size)
     ds
 
ds_train = df_to_dataset(dftrain)
ds_test = df_to_dataset(dftest)
 二,定义特征列step2: make feature columns...)
 
feature_columns = []
 
 数值列
for col in [agefareparchsibsp'] + [
    c for c in dfdata.columns if c.endswith()]:
    feature_columns.append(tf.feature_column.numeric_column(col))
 
 分桶列
age = tf.feature_column.numeric_column()
age_buckets = tf.feature_column.bucketized_column(age,boundaries=[18,25,30,35,40,45,50,55,60,65])
feature_columns.append(age_buckets)
 
 类别列 注意:所有的Catogorical Column类型最终都要通过indicator_column转换成Dense Column类型才能传入模型!!
sex = tf.feature_column.indicator_column(
      tf.feature_column.categorical_column_with_vocabulary_list(
      key=sexmale",1)">female]))
feature_columns.append(sex)
 
pclass =pclass]))
feature_columns.append(pclass)
 
ticket = tf.feature_column.indicator_column(
     tf.feature_column.categorical_column_with_hash_bucket(ticket))
feature_columns.append(ticket)
 
embarked =embarkedSCB]))
feature_columns.append(embarked)
 
 嵌入列
cabin = tf.feature_column.embedding_column(
    tf.feature_column.categorical_column_with_hash_bucket(cabin)
feature_columns.append(cabin)
 
 交叉列
pclass_cate = tf.feature_column.categorical_column_with_vocabulary_list(
          key=])
 
crossed_feature = tf.feature_column.indicator_column(
    tf.feature_column.crossed_column([age_buckets,pclass_cate],hash_bucket_size=15))
 
feature_columns.append(crossed_feature)
 
 三,定义模型step3: define model...)
 
tf.keras.backend.clear_session()
model = tf.keras.Sequential([
  layers.DenseFeatures(feature_columns),将特征列放入到tf.keras.layers.DenseFeatures中!!!
  layers.Dense(64,activation=relusigmoid)
])
 
 四,训练模型step4: train model...)
 
model.compile(optimizer=adam,loss=binary_crossentropyaccuracy])
 
history = model.fit(ds_train,validation_data=ds_test,epochs=10)
 五,评估模型step5: eval model...)
 
model.summary()
 
 
%matplotlib inline
%config InlineBackend.figure_format = svg'
 
 matplotlib.pyplot as plt
 
 plot_metric(history,metric):
    train_metrics = history.history[metric]
    val_metrics = history.history[val_'+metric]
    epochs = range(1,len(train_metrics) + 1)
    plt.plot(epochs,train_metrics,bo--ro-)
    plt.title(Training and validation  metric)
    plt.xlabel(Epochs)
    plt.ylabel(metric)
    plt.legend([train_"+metric,1)">metric])
    plt.show()
 
plot_metric(history,1)">")
================================================================================2020-04-13 02:29:07
step1: prepare dataset......



================================================================================2020-04-13 02:29:08
step2: make feature columns......



================================================================================2020-04-13 02:29:08
step3: define model......



================================================================================2020-04-13 02:29:08
step4: train model......


Epoch 1/10
23/23 [==============================] - 0s 21ms/step - loss: 0.7117 - accuracy: 0.6615 - val_loss: 0.5706 - val_accuracy: 0.7039
Epoch 2/10
23/23 [==============================] - 0s 3ms/step - loss: 0.5920 - accuracy: 0.7022 - val_loss: 0.6129 - val_accuracy: 0.6648
Epoch 3/10
23/23 [==============================] - 0s 3ms/step - loss: 0.6388 - accuracy: 0.7079 - val_loss: 0.5196 - val_accuracy: 0.7374
Epoch 4/10
23/23 [==============================] - 0s 3ms/step - loss: 0.5950 - accuracy: 0.7219 - val_loss: 0.5028 - val_accuracy: 0.7318
Epoch 5/10
23/23 [==============================] - 0s 3ms/step - loss: 0.5166 - accuracy: 0.7486 - val_loss: 0.4975 - val_accuracy: 0.7318
Epoch 6/10
23/23 [==============================] - 0s 3ms/step - loss: 0.5260 - accuracy: 0.7612 - val_loss: 0.5045 - val_accuracy: 0.7821
Epoch 7/10
23/23 [==============================] - 0s 3ms/step - loss: 0.4957 - accuracy: 0.7697 - val_loss: 0.4756 - val_accuracy: 0.7709
Epoch 8/10
23/23 [==============================] - 0s 3ms/step - loss: 0.4848 - accuracy: 0.7837 - val_loss: 0.4532 - val_accuracy: 0.8045
Epoch 9/10
23/23 [==============================] - 0s 3ms/step - loss: 0.4636 - accuracy: 0.8006 - val_loss: 0.4561 - val_accuracy: 0.7989
Epoch 10/10
23/23 [==============================] - 0s 3ms/step - loss: 0.4784 - accuracy: 0.7907 - val_loss: 0.4722 - val_accuracy: 0.7821

================================================================================2020-04-13 02:29:11
step5: eval model......


Model: sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
dense_features (DenseFeature multiple                  64        

dense (Dense)                multiple                  3008      

dense_1 (Dense)              multiple                  4160      

dense_2 (Dense)              multiple                  65        
=================================================================
Total params: 7,297
Trainable params: 7,1)">
Non-trainable params: 0
_________________________________________________________________

 

参考:

开源电子书地址:https://lyhue1991.github.io/eat_tensorflow2_in_30_days/

GitHub 项目地址:https://github.com/lyhue1991/eat_tensorflow2_in_30_days

 

猜你在找的Tensorflow相关文章