【tensorflow2.0】使用多GPU训练模型

前端之家收集整理的这篇文章主要介绍了【tensorflow2.0】使用多GPU训练模型前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。

如果使用多GPU训练模型,推荐使用内置fit方法,较为方便,仅需添加2行代码

在Colab笔记本中:修改->笔记本设置->硬件加速器 中选择 GPU

注:以下代码只能在Colab 上才能正确执行。

可通过以下colab链接测试效果《tf_多GPU》:

https://colab.research.google.com/drive/1j2kp_t0S_cofExSN7IyJ4QtMscbVlXU-

MirroredStrategy过程简介:

  • 训练开始前,该策略在所有 N 个计算设备上均各复制一份完整的模型;
  • 每次训练传入一个批次的数据时,将数据分成 N 份,分别传入 N 个计算设备(即数据并行);
  • N 个计算设备使用本地变量(镜像变量)分别计算自己所获得的部分数据的梯度;
  • 使用分布式计算的 All-reduce 操作,在计算设备间高效交换梯度数据并进行求和,使得最终每个设备都有了所有设备的梯度之和;
  • 使用梯度求和的结果更新本地变量(镜像变量);
  • 当所有设备均更新本地变量后,进行下一轮训练(即该并行策略是同步的)。
tensorflow_version 2.x
import tensorflow as tf
print(tf.__version__)
from tensorflow.keras import * 
# 此处在colab上使用1个GPU模拟出两个逻辑GPU进行多GPU训练
gpus = tf.config.experimental.list_physical_devices('GPU'if gpus:
     设置两个逻辑GPU模拟多GPU训练
    try:
        tf.config.experimental.set_virtual_device_configuration(gpus[0],[tf.config.experimental.VirtualDeviceConfiguration(memory_limit=1024),tf.config.experimental.VirtualDeviceConfiguration(memory_limit=1024)])
        logical_gpus = tf.config.experimental.list_logical_devices()
        print(len(gpus),"Physical GPU,",len(logical_gpus),1)">Logical GPUs")
    except RuntimeError as e:
        print(e)

2.2.0-rc2

1 Physical GPU,2 Logical GPUs

一,准备数据

MAX_LEN = 300
BATCH_SIZE = 32
(x_train,y_train),(x_test,y_test) = datasets.reuters.load_data()
x_train = preprocessing.sequence.pad_sequences(x_train,maxlen=MAX_LEN)
x_test = preprocessing.sequence.pad_sequences(x_test,1)">MAX_LEN)
 
MAX_WORDS = x_train.max()+1
CAT_NUM = y_train.max()+1
 
ds_train = tf.data.Dataset.from_tensor_slices((x_train,y_train)) \
          .shuffle(buffer_size = 1000).batch(BATCH_SIZE) \
          .prefetch(tf.data.experimental.AUTOTUNE).cache()
 
ds_test = tf.data.Dataset.from_tensor_slices((x_test,y_test)) \
          .shuffle(buffer_size = 1000).batch(BATCH_SIZE) \
          .prefetch(tf.data.experimental.AUTOTUNE).cache()

二,定义模型

tf.keras.backend.clear_session()
def create_model():
 
    model = models.Sequential()
 
    model.add(layers.Embedding(MAX_WORDS,7,input_length=MAX_LEN))
    model.add(layers.Conv1D(filters = 64,kernel_size = 5,activation = relu))
    model.add(layers.MaxPool1D(2))
    model.add(layers.Conv1D(filters = 32,kernel_size = 3,1)">))
    model.add(layers.Flatten())
    model.add(layers.Dense(CAT_NUM,activation = softmax))
    return(model)
 
 compile_model(model):
    model.compile(optimizer=optimizers.Nadam(),loss=losses.SparseCategoricalCrossentropy(from_logits=True),metrics=[metrics.SparseCategoricalAccuracy(),metrics.SparseTopKCategoricalAccuracy(5)]) 
    return(model)

三,训练模型

 增加以下两行代码
strategy = tf.distribute.MirroredStrategy()  
with strategy.scope(): 
    model = create_model()
    model.summary()
    model = compile_model(model)
 
history = model.fit(ds_train,validation_data = ds_test,epochs = 10)  
WARNING:tensorflow:NCCL is not supported when using virtual GPUs,fallingback to reduction to one device
INFO:tensorflow:Using MirroredStrategy with devices (/job:localhost/replica:0/task:0/device:GPU:0',1)">/job:localhost/replica:0/task:0/device:GPU:1)
Model: sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
embedding (Embedding)        (None,300,7)            216874    

conv1d (Conv1D)              (None,296,64)           2304      

max_pooling1d (MaxPooling1D) (None,148,64)           0         

conv1d_1 (Conv1D)            (None,146,32)           6176      

max_pooling1d_1 (MaxPooling1 (None,73,32)            0         

flatten (Flatten)            (None,2336)              0         

dense (Dense)                (None,46)                107502    
=================================================================
Total params: 332,856
Trainable params: 332,1)">
Non-trainable params: 0

Epoch 1/10
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:GPU:0 then broadcast to ().
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:GPU:0 then broadcast to ().
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:cpu:0 then broadcast to (/job:localhost/replica:0/task:0/device:cpu:0,).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:cpu:0 then broadcast to (281/281 [==============================] - 4s 15ms/step - sparse_categorical_accuracy: 0.3546 - loss: 3.5168 - sparse_top_k_categorical_accuracy: 0.7163 - val_sparse_categorical_accuracy: 0.5000 - val_loss: 3.3722 - val_sparse_top_k_categorical_accuracy: 0.7066
Epoch 2/10
281/281 [==============================] - 5s 18ms/step - sparse_categorical_accuracy: 0.5279 - loss: 3.3386 - sparse_top_k_categorical_accuracy: 0.7267 - val_sparse_categorical_accuracy: 0.5387 - val_loss: 3.3299 - val_sparse_top_k_categorical_accuracy: 0.7173
Epoch 3/10
281/281 [==============================] - 5s 18ms/step - sparse_categorical_accuracy: 0.5583 - loss: 3.3094 - sparse_top_k_categorical_accuracy: 0.7238 - val_sparse_categorical_accuracy: 0.5490 - val_loss: 3.3169 - val_sparse_top_k_categorical_accuracy: 0.7217
Epoch 4/10
281/281 [==============================] - 5s 18ms/step - sparse_categorical_accuracy: 0.5856 - loss: 3.2818 - sparse_top_k_categorical_accuracy: 0.7244 - val_sparse_categorical_accuracy: 0.5574 - val_loss: 3.3077 - val_sparse_top_k_categorical_accuracy: 0.7217
Epoch 5/10
281/281 [==============================] - 5s 18ms/step - sparse_categorical_accuracy: 0.5967 - loss: 3.2693 - sparse_top_k_categorical_accuracy: 0.7242 - val_sparse_categorical_accuracy: 0.5659 - val_loss: 3.2993 - val_sparse_top_k_categorical_accuracy: 0.7248
Epoch 6/10
281/281 [==============================] - 5s 18ms/step - sparse_categorical_accuracy: 0.6030 - loss: 3.2626 - sparse_top_k_categorical_accuracy: 0.7262 - val_sparse_categorical_accuracy: 0.5690 - val_loss: 3.2974 - val_sparse_top_k_categorical_accuracy: 0.7244
Epoch 7/10
281/281 [==============================] - 5s 18ms/step - sparse_categorical_accuracy: 0.6054 - loss: 3.2600 - sparse_top_k_categorical_accuracy: 0.7266 - val_sparse_categorical_accuracy: 0.5677 - val_loss: 3.2980 - val_sparse_top_k_categorical_accuracy: 0.7262
Epoch 8/10
281/281 [==============================] - 5s 18ms/step - sparse_categorical_accuracy: 0.6065 - loss: 3.2581 - sparse_top_k_categorical_accuracy: 0.7273 - val_sparse_categorical_accuracy: 0.5708 - val_loss: 3.2990 - val_sparse_top_k_categorical_accuracy: 0.7262
Epoch 9/10
281/281 [==============================] - 5s 18ms/step - sparse_categorical_accuracy: 0.6091 - loss: 3.2558 - sparse_top_k_categorical_accuracy: 0.7283 - val_sparse_categorical_accuracy: 0.5726 - val_loss: 3.2952 - val_sparse_top_k_categorical_accuracy: 0.7253
Epoch 10/10
281/281 [==============================] - 5s 18ms/step - sparse_categorical_accuracy: 0.6093 - loss: 3.2551 - sparse_top_k_categorical_accuracy: 0.7288 - val_sparse_categorical_accuracy: 0.5726 - val_loss: 3.2908 - val_sparse_top_k_categorical_accuracy: 0.7244

 

参考:

开源电子书地址:https://lyhue1991.github.io/eat_tensorflow2_in_30_days/

GitHub 项目地址:https://github.com/lyhue1991/eat_tensorflow2_in_30_days

猜你在找的Tensorflow相关文章