ACE_Reactor类学习

前端之家收集整理的这篇文章主要介绍了ACE_Reactor类学习前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。

ACE_Reactor :

这是一个事件监听分派中心, 通过ACE_Reactor注册需要监控的事件,当事件发生时,ACE_Reactor就会自动调用注册时指定的控制程序进行处理。

转:

ACE Reactor 框架简化了事件驱动程序的开发,而事件驱动是许多网络化应用的特征。该框架实现Reactor模式,允许事件驱动的应用对源自许多不同事件源的事件作出反应,如I/O句柄,定时器,以及信号。应用重新定义框架所定义的挂钩方法,对其进行分派来处理事件。

一、ACE Reactor 框架的责任:

1、检测来自各种事件源的事件的发生。

2、将事件多路分离给其预先登记的事件处理器。

3、分派给处理器所定义的挂钩方法,从而以一种应用定义的方式处理这些事件。


代码

// $Id: Reactor.cpp 91368 2010-08-16 13:03:34Z mhengstmengel $

#include "ace/Reactor.h"

#if !defined (ACE_LACKS_ACE_SVCCONF)
#  include "ace/Service_Config.h"
#endif /* !ACE_LACKS_ACE_SVCCONF */

/*
 * Hook to specialize the includes directly with the concrete
 * Reactor type,e.g.,select,thread pool reactor
 * known at compile time. This hook results in all the
 * #defines being commented
 * out and the concrete header file directly included.
 */
//@@ REACTOR_SPL_COMMENT_INCLUDE_START_HOOK
// Only include the headers needed to compile.
#if !defined (ACE_WIN32) \
      || !defined (ACE_HAS_WINSOCK2) || (ACE_HAS_WINSOCK2 == 0) \
      || defined (ACE_USE_SELECT_REACTOR_FOR_REACTOR_IMPL) \
      || defined (ACE_USE_TP_REACTOR_FOR_REACTOR_IMPL) \
      || defined (ACE_USE_DEV_POLL_REACTOR_FOR_REACTOR_IMPL)
#  if defined (ACE_USE_TP_REACTOR_FOR_REACTOR_IMPL)
#    include "ace/TP_Reactor.h"
#  else
#    if defined (ACE_USE_DEV_POLL_REACTOR_FOR_REACTOR_IMPL)
#      include "ace/Dev_Poll_Reactor.h"
#    else
#      include "ace/Select_Reactor.h"
#    endif /* ACE_USE_DEV_POLL_REACTOR_FOR_REACTOR_IMPL */
#  endif /* ACE_USE_TP_REACTOR_FOR_REACTOR_IMPL */
#else /* We are on Win32 and we have winsock and ACE_USE_SELECT_REACTOR_FOR_REACTOR_IMPL is not defined */
#  if defined (ACE_USE_MSG_WFMO_REACTOR_FOR_REACTOR_IMPL)
#    include "ace/Msg_WFMO_Reactor.h"
#  else
#    include "ace/WFMO_Reactor.h"
#  endif /* ACE_USE_MSG_WFMO_REACTOR_FOR_REACTOR_IMPL */
#endif /* !defined (ACE_WIN32) || !defined (ACE_HAS_WINSOCK2) || (ACE_HAS_WINSOCK2 == 0) || defined (ACE_USE_SELECT_REACTOR_FOR_REACTOR_IMPL) */

/*
 * End comment hook.
 */
//@@ REACTOR_SPL_COMMENT_INCLUDE_END_HOOK

#include "ace/Static_Object_Lock.h"
#include "ace/Framework_Component.h"
#include "ace/Guard_T.h"
#include "ace/Recursive_Thread_Mutex.h"

#if !defined (__ACE_INLINE__)
  #include "ace/Reactor.inl"
#endif /* __ACE_INLINE__ */

ACE_BEGIN_VERSIONED_NAMESPACE_DECL

ACE_ALLOC_HOOK_DEFINE(ACE_Reactor)

ACE_Reactor::ACE_Reactor (ACE_Reactor_Impl *impl,bool delete_implementation)
  : implementation_ (0),delete_implementation_ (delete_implementation)
{
  this->implementation (impl);

  if (this->implementation () == 0)
    {
/*
 * Hook to specialize the reactor implementation with the concrete
 * Reactor implementation known at compile time. This hook will
 * cause the conditionally defined code to be commented out and
 * the concrete Reactor directly created.
 */
//@@ REACTOR_SPL_CONSTRUCTOR_COMMENT_HOOK_START
#if !defined (ACE_WIN32) \
      || !defined (ACE_HAS_WINSOCK2) || (ACE_HAS_WINSOCK2 == 0) \
      || defined (ACE_USE_SELECT_REACTOR_FOR_REACTOR_IMPL) \
      || defined (ACE_USE_TP_REACTOR_FOR_REACTOR_IMPL) \
      || defined (ACE_USE_DEV_POLL_REACTOR_FOR_REACTOR_IMPL)
#  if defined (ACE_USE_TP_REACTOR_FOR_REACTOR_IMPL)
      ACE_NEW (impl,ACE_TP_Reactor);
#  else
#    if defined (ACE_USE_DEV_POLL_REACTOR_FOR_REACTOR_IMPL)
      ACE_NEW (impl,ACE_Dev_Poll_Reactor);
#    else
      ACE_NEW (impl,ACE_Select_Reactor);
#    endif /* ACE_USE_DEV_POLL_REACTOR_FOR_REACTOR_IMPL */
#  endif /* ACE_USE_TP_REACTOR_FOR_REACTOR_IMPL */
#else /* We are on Win32 and we have winsock and ACE_USE_SELECT_REACTOR_FOR_REACTOR_IMPL is not defined */
  #if defined (ACE_USE_MSG_WFMO_REACTOR_FOR_REACTOR_IMPL)
      ACE_NEW (impl,ACE_Msg_WFMO_Reactor);
  #else
      ACE_NEW (impl,ACE_WFMO_Reactor);
  #endif /* ACE_USE_MSG_WFMO_REACTOR_FOR_REACTOR_IMPL */
#endif /* !defined (ACE_WIN32) || !defined (ACE_HAS_WINSOCK2) || (ACE_HAS_WINSOCK2 == 0) || defined (ACE_USE_SELECT_REACTOR_FOR_REACTOR_IMPL) */

/*
 * End hook.
 */
//@@ REACTOR_SPL_CONSTRUCTOR_COMMENT_HOOK_END

      this->implementation (impl);
      this->delete_implementation_ = true;
    }
}

ACE_Reactor::~ACE_Reactor (void)
{
  this->implementation ()->close ();
  if (this->delete_implementation_)
    delete this->implementation ();
}

// Process-wide ACE_Reactor.
ACE_Reactor *ACE_Reactor::reactor_ = 0;

// Controls whether the Reactor is deleted when we shut down (we can
// only delete it safely if we created it!)
bool ACE_Reactor::delete_reactor_ = false;

ACE_Reactor *
ACE_Reactor::instance (void)
{
  ACE_TRACE ("ACE_Reactor::instance");

  if (ACE_Reactor::reactor_ == 0)
    {
      // Perform Double-Checked Locking Optimization.
      ACE_MT (ACE_GUARD_RETURN (ACE_Recursive_Thread_Mutex,ace_mon,*ACE_Static_Object_Lock::instance (),0));

      if (ACE_Reactor::reactor_ == 0)
        {
          ACE_NEW_RETURN (ACE_Reactor::reactor_,ACE_Reactor,0);
          ACE_Reactor::delete_reactor_ = true;
          ACE_REGISTER_FRAMEWORK_COMPONENT(ACE_Reactor,ACE_Reactor::reactor_)
        }
    }
  return ACE_Reactor::reactor_;
}

ACE_Reactor *
ACE_Reactor::instance (ACE_Reactor *r,bool delete_reactor)
{
  ACE_TRACE ("ACE_Reactor::instance");

  ACE_MT (ACE_GUARD_RETURN (ACE_Recursive_Thread_Mutex,0));
  ACE_Reactor *t = ACE_Reactor::reactor_;
  ACE_Reactor::delete_reactor_ = delete_reactor;

  ACE_Reactor::reactor_ = r;

  // We can't register the Reactor singleton as a framework component twice.
  // Therefore we test to see if we had an existing reactor instance,which
  // if so means it must have already been registered.
  if (t == 0)
    ACE_REGISTER_FRAMEWORK_COMPONENT(ACE_Reactor,ACE_Reactor::reactor_);

  return t;
}

void
ACE_Reactor::close_singleton (void)
{
  ACE_TRACE ("ACE_Reactor::close_singleton");

  ACE_MT (ACE_GUARD (ACE_Recursive_Thread_Mutex,*ACE_Static_Object_Lock::instance ()));

  if (ACE_Reactor::delete_reactor_)
    {
      delete ACE_Reactor::reactor_;
      ACE_Reactor::reactor_ = 0;
      ACE_Reactor::delete_reactor_ = false;
    }
}

const ACE_TCHAR *
ACE_Reactor::dll_name (void)
{
  return ACE_TEXT ("ACE");
}

const ACE_TCHAR *
ACE_Reactor::name (void)
{
  return ACE_TEXT ("ACE_Reactor");
}

int
ACE_Reactor::check_reconfiguration (ACE_Reactor *)
{
#if !defined (ACE_HAS_WINCE)  &&  !defined (ACE_LACKS_ACE_SVCCONF)
  if (ACE_Service_Config::reconfig_occurred ())
    {
      ACE_Service_Config::reconfigure ();
      return 1;
    }
#endif /* ! ACE_HAS_WINCE || ! ACE_LACKS_ACE_SVCCONF */
  return 0;
}

int
ACE_Reactor::run_reactor_event_loop (REACTOR_EVENT_HOOK eh)
{
  ACE_TRACE ("ACE_Reactor::run_reactor_event_loop");

  if (this->reactor_event_loop_done ())
    return 0;

  while (1)
    {
      int const result = this->implementation_->handle_events ();

      if (eh != 0 && (*eh)(this))
        continue;
      else if (result == -1 && this->implementation_->deactivated ())
        return 0;
      else if (result == -1)
        return -1;
    }

  ACE_NOTREACHED (return 0;)
}

int
ACE_Reactor::run_alertable_reactor_event_loop (REACTOR_EVENT_HOOK eh)
{
  ACE_TRACE ("ACE_Reactor::run_alertable_reactor_event_loop");

  if (this->reactor_event_loop_done ())
    return 0;

  while (1)
    {
      int const result = this->implementation_->alertable_handle_events ();

      if (eh != 0 && (*eh)(this))
        continue;
      else if (result == -1 && this->implementation_->deactivated ())
        return 0;
      else if (result == -1)
        return -1;
    }

  ACE_NOTREACHED (return 0;)
}

int
ACE_Reactor::run_reactor_event_loop (ACE_Time_Value &tv,REACTOR_EVENT_HOOK eh)
{
  ACE_TRACE ("ACE_Reactor::run_reactor_event_loop");

  if (this->reactor_event_loop_done ())
    return 0;

  while (1)
    {
      int result = this->implementation_->handle_events (tv);

      if (eh != 0 && (*eh) (this))
        continue;
      else if (result == -1)
        {
          if (this->implementation_->deactivated ())
            result = 0;
          return result;
        }
      else if (result == 0)
        {
          // The <handle_events> method timed out without dispatching
          // anything.  Because of rounding and conversion errors and
          // such,it could be that the wait loop (WFMO,etc.)
          // timed out,but the timer queue said it wasn't quite ready
          // to expire a timer. In this case,the ACE_Time_Value we
          // passed into handle_events won't have quite been reduced
          // to 0,and we need to go around again. If we are all the
          // way to 0,just return,as the entire time the caller
          // wanted to wait has been used up.
          if (tv.usec () > 0)
            continue;
          return 0;
        }
      // Else there were some events dispatched; go around again
    }

  ACE_NOTREACHED (return 0;)
}

int
ACE_Reactor::run_alertable_reactor_event_loop (ACE_Time_Value &tv,REACTOR_EVENT_HOOK eh)
{
  ACE_TRACE ("ACE_Reactor::run_alertable_reactor_event_loop");

  if (this->reactor_event_loop_done ())
    return 0;

  for (;;)
    {
      int result = this->implementation_->alertable_handle_events (tv);

      if (eh != 0 && (*eh)(this))
        continue;
      else if (result == -1 && this->implementation_->deactivated ())
        return 0;
      else if (result <= 0)
        return result;
    }
}

int
ACE_Reactor::register_handler (ACE_Event_Handler *event_handler,ACE_Reactor_Mask mask)
{
  // Remember the old reactor.
  ACE_Reactor *old_reactor = event_handler->reactor ();

  // Assign *this* <Reactor> to the <Event_Handler>.
  event_handler->reactor (this);

  int result = this->implementation ()->register_handler (event_handler,mask);
  if (result == -1)
    // Reset the old reactor in case of failures.
    event_handler->reactor (old_reactor);

  return result;
}

int
ACE_Reactor::register_handler (ACE_HANDLE io_handle,ACE_Event_Handler *event_handler,ACE_Reactor_Mask mask)
{
  // Remember the old reactor.
  ACE_Reactor *old_reactor = event_handler->reactor ();

  // Assign *this* <Reactor> to the <Event_Handler>.
  event_handler->reactor (this);

  int result = this->implementation ()->register_handler (io_handle,event_handler,mask);
  if (result == -1)
    // Reset the old reactor in case of failures.
    event_handler->reactor (old_reactor);

  return result;
}

#if defined (ACE_WIN32)

int
ACE_Reactor::register_handler (ACE_Event_Handler *event_handler,ACE_HANDLE event_handle)
{
  // Remember the old reactor.
  ACE_Reactor *old_reactor = event_handler->reactor ();

  // Assign *this* <Reactor> to the <Event_Handler>.
  event_handler->reactor (this);

  int result = this->implementation ()->register_handler (event_handler,event_handle);
  if (result == -1)
    // Reset the old reactor in case of failures.
    event_handler->reactor (old_reactor);

  return result;
}

#endif /* ACE_WIN32 */

int
ACE_Reactor::register_handler (ACE_HANDLE event_handle,ACE_HANDLE io_handle,ACE_Reactor_Mask mask)
{
  // Remember the old reactor.
  ACE_Reactor *old_reactor = event_handler->reactor ();

  // Assign *this* <Reactor> to the <Event_Handler>.
  event_handler->reactor (this);

  int result = this->implementation ()->register_handler (event_handle,io_handle,mask);
  if (result == -1)
    // Reset the old reactor in case of failures.
    event_handler->reactor (old_reactor);

  return result;
}

int
ACE_Reactor::register_handler (const ACE_Handle_Set &handles,ACE_Reactor_Mask mask)
{
  // Remember the old reactor.
  ACE_Reactor *old_reactor = event_handler->reactor ();

  // Assign *this* <Reactor> to the <Event_Handler>.
  event_handler->reactor (this);

  int result = this->implementation ()->register_handler (handles,mask);
  if (result == -1)
    // Reset the old reactor in case of failures.
    event_handler->reactor (old_reactor);

  return result;
}

long
ACE_Reactor::schedule_timer (ACE_Event_Handler *event_handler,const void *arg,const ACE_Time_Value &delta,const ACE_Time_Value &interval)
{
  // Remember the old reactor.
  ACE_Reactor *old_reactor = event_handler->reactor ();

  // Assign *this* <Reactor> to the <Event_Handler>.
  event_handler->reactor (this);

  long result = this->implementation ()->schedule_timer (event_handler,arg,delta,interval);
  if (result == -1)
    // Reset the old reactor in case of failures.
    event_handler->reactor (old_reactor);

  return result;
}

int
ACE_Reactor::schedule_wakeup (ACE_Event_Handler *event_handler,ACE_Reactor_Mask masks_to_be_added)
{
  // Remember the old reactor.
  ACE_Reactor *old_reactor = event_handler->reactor ();

  // Assign *this* <Reactor> to the <Event_Handler>.
  event_handler->reactor (this);

  int result = this->implementation ()->schedule_wakeup (event_handler,masks_to_be_added);
  if (result == -1)
    // Reset the old reactor in case of failures.
    event_handler->reactor (old_reactor);

  return result;
}

int
ACE_Reactor::notify (ACE_Event_Handler *event_handler,ACE_Reactor_Mask mask,ACE_Time_Value *tv)
{
  // First,try to remember this reactor in the event handler,in case
  // the event handler goes away before the notification is delivered.
  if (event_handler != 0 && event_handler->reactor () == 0)
    {
      event_handler->reactor (this);
    }
  return this->implementation ()->notify (event_handler,mask,tv);
}

int
ACE_Reactor::reset_timer_interval
  (long timer_id,const ACE_Time_Value &interval)
{
  ACE_TRACE ("ACE_Reactor::reset_timer_interval");

  return this->implementation ()->reset_timer_interval (timer_id,interval);
}

int
ACE_Reactor::cancel_timer (ACE_Event_Handler *event_handler,int dont_call_handle_close)
{
  return this->implementation ()->cancel_timer (event_handler,dont_call_handle_close);
}

int
ACE_Reactor::cancel_timer (long timer_id,const void **arg,int dont_call_handle_close)
{
  return this->implementation ()->cancel_timer (timer_id,dont_call_handle_close);
}

ACE_END_VERSIONED_NAMESPACE_DECL

二、ACE Reactor 框架类

1、ACE_Time_Value :提供时间和持续时间的可移植、规范化的表示,使用C++运算符重载来简化与时间有关的算术和关系运算。

2、ACE_Event_Handler :抽象类,其接口定义的挂钩方法是 ACE_Reactor 回调的目标。大多数通过ACE开发的应用事件处理器都是ACE_Event_Handler的后代。

3、ACE_Timer_Queue:抽象类,定义定时器队列的能力和接口。ACE含有多种派生自ACE_Timer_Queue的类,为不同的定时机制提供了灵活的支持

4、ACE_ Reactor:提供一个接口,用来在 Reactor 框架中管理事件处理器登记,并执行事件循环来驱动事件检测、多路分离的分派。

这些类在 Reactor 模式中扮演了以下角色:

1、事件基础设施层类(Event Infrastructure Layer Classes) 该类同步地检测事件并多路分离给事件处理器,并随即分派与之相关联的事件处理器挂钩方法。 ACE Reactor 框架中的基础设施层组件包括 ACE_Time_Value、ACE_Event_Handler、ACE定时器队列类,以及 ACE_Reactor的各种实现。

2、应用层类(Application Layer Classes) 该类定义事件处理器,以在其挂钩方法中执行应用所定义的处理。在 ACE Reactor 框架中,应用层类都是 ACE_Event_Handler 的后代。

三、ACE Reactor 框架的优点:

1、广泛的可移植性。

可以对框架进行配置,使用多种 OS 事件多路分离机制。

2、使事件检测、多路分离,以及分派自动化。

通过消除对不可移植的本地 OS 事件多路分离 API 的依赖,ACE Reactor 框架为应用提供了统一的面向对象事件检测,多路分离,以及分派机制,可以向 ACE_Reactor 登记事件处理器对象来处理各种类型的事件。

3、透明的可扩展性。

框架通过继承的动态绑定,采用挂钩方法,解除了“较低级的事件机制”(如检测多个I/O句柄上的事件,使定时器到期,以及多路分离和分派适当的事件处理器的方法来处理事件) 与“较高级的应用事件处理策略”(如连接建立策略、数据整编和解整编,以及对客户请求的处理) 的耦合。如此的设计使开发者能在不修改已有应用代码的情况下,对 ACE Reactor 框架进行透明扩展。

4、增加复用并使错误减至最少。

ACE Reactor 框架的事件检测、多路分离,以及分派机制是通用的,因而可被许多网络化应用复用。如此的事务分离使得开发者能够专注于高级的、应用所定义的事件处理器策略,而不是反复地与低级机制进行斗争。

5、高效的事件多路分离。

ACE Reactor 框架可高效地执行其事件多路分离和分派逻辑,如 ACE_Select_Reactor 使用了ACE_Handler_Set_Iteratorwrapper facade(包装外观)。它的 Iterator 模式中的优化实现基于成熟的算法,将运行时复杂度大大降低,从而极大地提高了大型应用的运行时性能

更多文章欢迎访问:http://blog.csdn.net/wallwind

猜你在找的React相关文章