ACE_Reactor :
这是一个事件监听分派中心, 通过ACE_Reactor注册需要监控的事件,当事件发生时,ACE_Reactor就会自动调用注册时指定的控制程序进行处理。
转:
ACE Reactor 框架简化了事件驱动程序的开发,而事件驱动是许多网络化应用的特征。该框架实现Reactor模式,允许事件驱动的应用对源自许多不同事件源的事件作出反应,如I/O句柄,定时器,以及信号。应用重新定义框架所定义的挂钩方法,对其进行分派来处理事件。
一、ACE Reactor 框架的责任:
1、检测来自各种事件源的事件的发生。
2、将事件多路分离给其预先登记的事件处理器。
3、分派给处理器所定义的挂钩方法,从而以一种应用定义的方式处理这些事件。
源代码
// $Id: Reactor.cpp 91368 2010-08-16 13:03:34Z mhengstmengel $ #include "ace/Reactor.h" #if !defined (ACE_LACKS_ACE_SVCCONF) # include "ace/Service_Config.h" #endif /* !ACE_LACKS_ACE_SVCCONF */ /* * Hook to specialize the includes directly with the concrete * Reactor type,e.g.,select,thread pool reactor * known at compile time. This hook results in all the * #defines being commented * out and the concrete header file directly included. */ //@@ REACTOR_SPL_COMMENT_INCLUDE_START_HOOK // Only include the headers needed to compile. #if !defined (ACE_WIN32) \ || !defined (ACE_HAS_WINSOCK2) || (ACE_HAS_WINSOCK2 == 0) \ || defined (ACE_USE_SELECT_REACTOR_FOR_REACTOR_IMPL) \ || defined (ACE_USE_TP_REACTOR_FOR_REACTOR_IMPL) \ || defined (ACE_USE_DEV_POLL_REACTOR_FOR_REACTOR_IMPL) # if defined (ACE_USE_TP_REACTOR_FOR_REACTOR_IMPL) # include "ace/TP_Reactor.h" # else # if defined (ACE_USE_DEV_POLL_REACTOR_FOR_REACTOR_IMPL) # include "ace/Dev_Poll_Reactor.h" # else # include "ace/Select_Reactor.h" # endif /* ACE_USE_DEV_POLL_REACTOR_FOR_REACTOR_IMPL */ # endif /* ACE_USE_TP_REACTOR_FOR_REACTOR_IMPL */ #else /* We are on Win32 and we have winsock and ACE_USE_SELECT_REACTOR_FOR_REACTOR_IMPL is not defined */ # if defined (ACE_USE_MSG_WFMO_REACTOR_FOR_REACTOR_IMPL) # include "ace/Msg_WFMO_Reactor.h" # else # include "ace/WFMO_Reactor.h" # endif /* ACE_USE_MSG_WFMO_REACTOR_FOR_REACTOR_IMPL */ #endif /* !defined (ACE_WIN32) || !defined (ACE_HAS_WINSOCK2) || (ACE_HAS_WINSOCK2 == 0) || defined (ACE_USE_SELECT_REACTOR_FOR_REACTOR_IMPL) */ /* * End comment hook. */ //@@ REACTOR_SPL_COMMENT_INCLUDE_END_HOOK #include "ace/Static_Object_Lock.h" #include "ace/Framework_Component.h" #include "ace/Guard_T.h" #include "ace/Recursive_Thread_Mutex.h" #if !defined (__ACE_INLINE__) #include "ace/Reactor.inl" #endif /* __ACE_INLINE__ */ ACE_BEGIN_VERSIONED_NAMESPACE_DECL ACE_ALLOC_HOOK_DEFINE(ACE_Reactor) ACE_Reactor::ACE_Reactor (ACE_Reactor_Impl *impl,bool delete_implementation) : implementation_ (0),delete_implementation_ (delete_implementation) { this->implementation (impl); if (this->implementation () == 0) { /* * Hook to specialize the reactor implementation with the concrete * Reactor implementation known at compile time. This hook will * cause the conditionally defined code to be commented out and * the concrete Reactor directly created. */ //@@ REACTOR_SPL_CONSTRUCTOR_COMMENT_HOOK_START #if !defined (ACE_WIN32) \ || !defined (ACE_HAS_WINSOCK2) || (ACE_HAS_WINSOCK2 == 0) \ || defined (ACE_USE_SELECT_REACTOR_FOR_REACTOR_IMPL) \ || defined (ACE_USE_TP_REACTOR_FOR_REACTOR_IMPL) \ || defined (ACE_USE_DEV_POLL_REACTOR_FOR_REACTOR_IMPL) # if defined (ACE_USE_TP_REACTOR_FOR_REACTOR_IMPL) ACE_NEW (impl,ACE_TP_Reactor); # else # if defined (ACE_USE_DEV_POLL_REACTOR_FOR_REACTOR_IMPL) ACE_NEW (impl,ACE_Dev_Poll_Reactor); # else ACE_NEW (impl,ACE_Select_Reactor); # endif /* ACE_USE_DEV_POLL_REACTOR_FOR_REACTOR_IMPL */ # endif /* ACE_USE_TP_REACTOR_FOR_REACTOR_IMPL */ #else /* We are on Win32 and we have winsock and ACE_USE_SELECT_REACTOR_FOR_REACTOR_IMPL is not defined */ #if defined (ACE_USE_MSG_WFMO_REACTOR_FOR_REACTOR_IMPL) ACE_NEW (impl,ACE_Msg_WFMO_Reactor); #else ACE_NEW (impl,ACE_WFMO_Reactor); #endif /* ACE_USE_MSG_WFMO_REACTOR_FOR_REACTOR_IMPL */ #endif /* !defined (ACE_WIN32) || !defined (ACE_HAS_WINSOCK2) || (ACE_HAS_WINSOCK2 == 0) || defined (ACE_USE_SELECT_REACTOR_FOR_REACTOR_IMPL) */ /* * End hook. */ //@@ REACTOR_SPL_CONSTRUCTOR_COMMENT_HOOK_END this->implementation (impl); this->delete_implementation_ = true; } } ACE_Reactor::~ACE_Reactor (void) { this->implementation ()->close (); if (this->delete_implementation_) delete this->implementation (); } // Process-wide ACE_Reactor. ACE_Reactor *ACE_Reactor::reactor_ = 0; // Controls whether the Reactor is deleted when we shut down (we can // only delete it safely if we created it!) bool ACE_Reactor::delete_reactor_ = false; ACE_Reactor * ACE_Reactor::instance (void) { ACE_TRACE ("ACE_Reactor::instance"); if (ACE_Reactor::reactor_ == 0) { // Perform Double-Checked Locking Optimization. ACE_MT (ACE_GUARD_RETURN (ACE_Recursive_Thread_Mutex,ace_mon,*ACE_Static_Object_Lock::instance (),0)); if (ACE_Reactor::reactor_ == 0) { ACE_NEW_RETURN (ACE_Reactor::reactor_,ACE_Reactor,0); ACE_Reactor::delete_reactor_ = true; ACE_REGISTER_FRAMEWORK_COMPONENT(ACE_Reactor,ACE_Reactor::reactor_) } } return ACE_Reactor::reactor_; } ACE_Reactor * ACE_Reactor::instance (ACE_Reactor *r,bool delete_reactor) { ACE_TRACE ("ACE_Reactor::instance"); ACE_MT (ACE_GUARD_RETURN (ACE_Recursive_Thread_Mutex,0)); ACE_Reactor *t = ACE_Reactor::reactor_; ACE_Reactor::delete_reactor_ = delete_reactor; ACE_Reactor::reactor_ = r; // We can't register the Reactor singleton as a framework component twice. // Therefore we test to see if we had an existing reactor instance,which // if so means it must have already been registered. if (t == 0) ACE_REGISTER_FRAMEWORK_COMPONENT(ACE_Reactor,ACE_Reactor::reactor_); return t; } void ACE_Reactor::close_singleton (void) { ACE_TRACE ("ACE_Reactor::close_singleton"); ACE_MT (ACE_GUARD (ACE_Recursive_Thread_Mutex,*ACE_Static_Object_Lock::instance ())); if (ACE_Reactor::delete_reactor_) { delete ACE_Reactor::reactor_; ACE_Reactor::reactor_ = 0; ACE_Reactor::delete_reactor_ = false; } } const ACE_TCHAR * ACE_Reactor::dll_name (void) { return ACE_TEXT ("ACE"); } const ACE_TCHAR * ACE_Reactor::name (void) { return ACE_TEXT ("ACE_Reactor"); } int ACE_Reactor::check_reconfiguration (ACE_Reactor *) { #if !defined (ACE_HAS_WINCE) && !defined (ACE_LACKS_ACE_SVCCONF) if (ACE_Service_Config::reconfig_occurred ()) { ACE_Service_Config::reconfigure (); return 1; } #endif /* ! ACE_HAS_WINCE || ! ACE_LACKS_ACE_SVCCONF */ return 0; } int ACE_Reactor::run_reactor_event_loop (REACTOR_EVENT_HOOK eh) { ACE_TRACE ("ACE_Reactor::run_reactor_event_loop"); if (this->reactor_event_loop_done ()) return 0; while (1) { int const result = this->implementation_->handle_events (); if (eh != 0 && (*eh)(this)) continue; else if (result == -1 && this->implementation_->deactivated ()) return 0; else if (result == -1) return -1; } ACE_NOTREACHED (return 0;) } int ACE_Reactor::run_alertable_reactor_event_loop (REACTOR_EVENT_HOOK eh) { ACE_TRACE ("ACE_Reactor::run_alertable_reactor_event_loop"); if (this->reactor_event_loop_done ()) return 0; while (1) { int const result = this->implementation_->alertable_handle_events (); if (eh != 0 && (*eh)(this)) continue; else if (result == -1 && this->implementation_->deactivated ()) return 0; else if (result == -1) return -1; } ACE_NOTREACHED (return 0;) } int ACE_Reactor::run_reactor_event_loop (ACE_Time_Value &tv,REACTOR_EVENT_HOOK eh) { ACE_TRACE ("ACE_Reactor::run_reactor_event_loop"); if (this->reactor_event_loop_done ()) return 0; while (1) { int result = this->implementation_->handle_events (tv); if (eh != 0 && (*eh) (this)) continue; else if (result == -1) { if (this->implementation_->deactivated ()) result = 0; return result; } else if (result == 0) { // The <handle_events> method timed out without dispatching // anything. Because of rounding and conversion errors and // such,it could be that the wait loop (WFMO,etc.) // timed out,but the timer queue said it wasn't quite ready // to expire a timer. In this case,the ACE_Time_Value we // passed into handle_events won't have quite been reduced // to 0,and we need to go around again. If we are all the // way to 0,just return,as the entire time the caller // wanted to wait has been used up. if (tv.usec () > 0) continue; return 0; } // Else there were some events dispatched; go around again } ACE_NOTREACHED (return 0;) } int ACE_Reactor::run_alertable_reactor_event_loop (ACE_Time_Value &tv,REACTOR_EVENT_HOOK eh) { ACE_TRACE ("ACE_Reactor::run_alertable_reactor_event_loop"); if (this->reactor_event_loop_done ()) return 0; for (;;) { int result = this->implementation_->alertable_handle_events (tv); if (eh != 0 && (*eh)(this)) continue; else if (result == -1 && this->implementation_->deactivated ()) return 0; else if (result <= 0) return result; } } int ACE_Reactor::register_handler (ACE_Event_Handler *event_handler,ACE_Reactor_Mask mask) { // Remember the old reactor. ACE_Reactor *old_reactor = event_handler->reactor (); // Assign *this* <Reactor> to the <Event_Handler>. event_handler->reactor (this); int result = this->implementation ()->register_handler (event_handler,mask); if (result == -1) // Reset the old reactor in case of failures. event_handler->reactor (old_reactor); return result; } int ACE_Reactor::register_handler (ACE_HANDLE io_handle,ACE_Event_Handler *event_handler,ACE_Reactor_Mask mask) { // Remember the old reactor. ACE_Reactor *old_reactor = event_handler->reactor (); // Assign *this* <Reactor> to the <Event_Handler>. event_handler->reactor (this); int result = this->implementation ()->register_handler (io_handle,event_handler,mask); if (result == -1) // Reset the old reactor in case of failures. event_handler->reactor (old_reactor); return result; } #if defined (ACE_WIN32) int ACE_Reactor::register_handler (ACE_Event_Handler *event_handler,ACE_HANDLE event_handle) { // Remember the old reactor. ACE_Reactor *old_reactor = event_handler->reactor (); // Assign *this* <Reactor> to the <Event_Handler>. event_handler->reactor (this); int result = this->implementation ()->register_handler (event_handler,event_handle); if (result == -1) // Reset the old reactor in case of failures. event_handler->reactor (old_reactor); return result; } #endif /* ACE_WIN32 */ int ACE_Reactor::register_handler (ACE_HANDLE event_handle,ACE_HANDLE io_handle,ACE_Reactor_Mask mask) { // Remember the old reactor. ACE_Reactor *old_reactor = event_handler->reactor (); // Assign *this* <Reactor> to the <Event_Handler>. event_handler->reactor (this); int result = this->implementation ()->register_handler (event_handle,io_handle,mask); if (result == -1) // Reset the old reactor in case of failures. event_handler->reactor (old_reactor); return result; } int ACE_Reactor::register_handler (const ACE_Handle_Set &handles,ACE_Reactor_Mask mask) { // Remember the old reactor. ACE_Reactor *old_reactor = event_handler->reactor (); // Assign *this* <Reactor> to the <Event_Handler>. event_handler->reactor (this); int result = this->implementation ()->register_handler (handles,mask); if (result == -1) // Reset the old reactor in case of failures. event_handler->reactor (old_reactor); return result; } long ACE_Reactor::schedule_timer (ACE_Event_Handler *event_handler,const void *arg,const ACE_Time_Value &delta,const ACE_Time_Value &interval) { // Remember the old reactor. ACE_Reactor *old_reactor = event_handler->reactor (); // Assign *this* <Reactor> to the <Event_Handler>. event_handler->reactor (this); long result = this->implementation ()->schedule_timer (event_handler,arg,delta,interval); if (result == -1) // Reset the old reactor in case of failures. event_handler->reactor (old_reactor); return result; } int ACE_Reactor::schedule_wakeup (ACE_Event_Handler *event_handler,ACE_Reactor_Mask masks_to_be_added) { // Remember the old reactor. ACE_Reactor *old_reactor = event_handler->reactor (); // Assign *this* <Reactor> to the <Event_Handler>. event_handler->reactor (this); int result = this->implementation ()->schedule_wakeup (event_handler,masks_to_be_added); if (result == -1) // Reset the old reactor in case of failures. event_handler->reactor (old_reactor); return result; } int ACE_Reactor::notify (ACE_Event_Handler *event_handler,ACE_Reactor_Mask mask,ACE_Time_Value *tv) { // First,try to remember this reactor in the event handler,in case // the event handler goes away before the notification is delivered. if (event_handler != 0 && event_handler->reactor () == 0) { event_handler->reactor (this); } return this->implementation ()->notify (event_handler,mask,tv); } int ACE_Reactor::reset_timer_interval (long timer_id,const ACE_Time_Value &interval) { ACE_TRACE ("ACE_Reactor::reset_timer_interval"); return this->implementation ()->reset_timer_interval (timer_id,interval); } int ACE_Reactor::cancel_timer (ACE_Event_Handler *event_handler,int dont_call_handle_close) { return this->implementation ()->cancel_timer (event_handler,dont_call_handle_close); } int ACE_Reactor::cancel_timer (long timer_id,const void **arg,int dont_call_handle_close) { return this->implementation ()->cancel_timer (timer_id,dont_call_handle_close); } ACE_END_VERSIONED_NAMESPACE_DECL
二、ACE Reactor 框架类
1、ACE_Time_Value :提供时间和持续时间的可移植、规范化的表示,使用C++运算符重载来简化与时间有关的算术和关系运算。
2、ACE_Event_Handler :抽象类,其接口定义的挂钩方法是 ACE_Reactor 回调的目标。大多数通过ACE开发的应用事件处理器都是ACE_Event_Handler的后代。
3、ACE_Timer_Queue:抽象类,定义定时器队列的能力和接口。ACE含有多种派生自ACE_Timer_Queue的类,为不同的定时机制提供了灵活的支持。
4、ACE_ Reactor:提供一个接口,用来在 Reactor 框架中管理事件处理器登记,并执行事件循环来驱动事件检测、多路分离的分派。
这些类在 Reactor 模式中扮演了以下角色:
1、事件基础设施层类(Event Infrastructure Layer Classes) 该类同步地检测事件并多路分离给事件处理器,并随即分派与之相关联的事件处理器挂钩方法。 ACE Reactor 框架中的基础设施层组件包括 ACE_Time_Value、ACE_Event_Handler、ACE定时器队列类,以及 ACE_Reactor的各种实现。
2、应用层类(Application Layer Classes) 该类定义事件处理器,以在其挂钩方法中执行应用所定义的处理。在 ACE Reactor 框架中,应用层类都是 ACE_Event_Handler 的后代。
三、ACE Reactor 框架的优点:
1、广泛的可移植性。
可以对框架进行配置,使用多种 OS 事件多路分离机制。
2、使事件检测、多路分离,以及分派自动化。
通过消除对不可移植的本地 OS 事件多路分离 API 的依赖,ACE Reactor 框架为应用提供了统一的面向对象事件检测,多路分离,以及分派机制,可以向 ACE_Reactor 登记事件处理器对象来处理各种类型的事件。
3、透明的可扩展性。
框架通过继承的动态绑定,采用挂钩方法,解除了“较低级的事件机制”(如检测多个I/O句柄上的事件,使定时器到期,以及多路分离和分派适当的事件处理器的方法来处理事件) 与“较高级的应用事件处理策略”(如连接建立策略、数据整编和解整编,以及对客户请求的处理) 的耦合。如此的设计使开发者能在不修改已有应用代码的情况下,对 ACE Reactor 框架进行透明扩展。
ACE Reactor 框架的事件检测、多路分离,以及分派机制是通用的,因而可被许多网络化应用复用。如此的事务分离使得开发者能够专注于高级的、应用所定义的事件处理器策略,而不是反复地与低级机制进行斗争。
5、高效的事件多路分离。
ACE Reactor 框架可高效地执行其事件多路分离和分派逻辑,如 ACE_Select_Reactor 使用了ACE_Handler_Set_Iteratorwrapper facade(包装外观)。它的 Iterator 模式中的优化实现基于成熟的算法,将运行时复杂度大大降低,从而极大地提高了大型应用的运行时性能。