sgu 194 Reactor Cooling 无源汇有上下界最大流

前端之家收集整理的这篇文章主要介绍了sgu 194 Reactor Cooling 无源汇有上下界最大流前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。

sgu 194 Reactor Cooling


题意:给n个点,m根pipe,每根pipe有单向的液体流动,每时每刻每根pipe流进来的物质要等于流出去的物质,要使得m条pipe组成一个循环体,并且满足每根pipe一定的流量限制,范围为[Li,Ri].即要满足每时刻流进来的不能超过Ri(最大流问题),同时最小不能低于Li。 问给定的数据能否构成一个循环体,如果可以,输出每条pipe中流了多少液体。

思路:
无源汇有上下界网络流求可行解
1. 将原网络中的边流量改为 up - low
2. 为了维持每个结点流量平衡,构造一个超级源点,一个超级汇点
3. 统计每个点流入的low值以及流出的low值和,流入为正,流出为负
4. 如果tot[i]为正,则源点向其连边,流量为tot[i]。如果为负,该点向汇点连边,流量为 - tot[i]
5. 做一次最大流,如果从源点流出的每一条边都满流,则存在可行流

这道题目如果存在可行流,还要输出每条pipe中的流量。
每条pipe的流量 = low值 + 新网络求过最大流只会的流量

代码
/*
ID: wuqi9395@126.com
PROG:
LANG: C++
*/
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<string>
#include<fstream>
#include<cstring>
#include<ctype.h>
#include<iostream>
#include<algorithm>
using namespace std;
#define INF (1 << 30)
#define LINF (1LL << 60)
#define PI acos(-1.0)
#define mem(a,b) memset(a,b,sizeof(a))
#define rep(i,a,n) for (int i = a; i < n; i++)
#define per(i,n) for (int i = n - 1; i >= a; i--)
#define eps 1e-6
#define debug puts("===============")
#define pb push_back
#define mkp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
#define POSIN(x,y) (0 <= (x) && (x) < n && 0 <= (y) && (y) < m)
typedef long long ll;
typedef unsigned long long ULL;
const int maxn = 1000;
const int maxm = 100000;
struct node {
    int v;    // vertex
    int cap;    // capacity
    int flow;   // current flow in this arc
    int nxt;
} e[maxm * 2];
int g[maxn],cnt;
int st,ed,n,m;

int id[maxm],low[maxm],tot[maxn];

void add(int u,int v,int c,int k) {
    e[++cnt].v = v;
    e[cnt].cap = c;
    e[cnt].flow = 0;
    e[cnt].nxt = g[u];
    g[u] = cnt;
    id[cnt] = k;

    e[++cnt].v = u;
    e[cnt].cap = 0;
    e[cnt].flow = 0;
    e[cnt].nxt = g[v];
    g[v] = cnt;
    id[cnt] = 0;
}

int should; //所构造的新网络中满流为should
void init() {
    memset(g,sizeof(g));
    //memset(tot,sizeof(tot));
    cnt = 1;
    int u,v,L,U;
    st = 0,ed = n + 1;
    for (int i = 1; i <= m; i++) {
        scanf("%d%d%d%d",&u,&v,&L,&U);
        add(u,U - L,i);
        low[i] = L;
        tot[u] -= L;
        tot[v] += L;
    }
    should = 0;
    for (int i = 1; i <= n; i++) {
        if (tot[i] > 0) add(st,i,tot[i],0),should += tot[i];
        if (tot[i] < 0) add(i,-tot[i],0);
    }
    n = n + 3;
}

int dist[maxn],numbs[maxn],q[maxn];
void rev_bfs() {
    int font = 0,rear = 1;
    for (int i = 0; i <= n; i++) { //n为总点数
        dist[i] = maxn;
        numbs[i] = 0;
    }
    q[font] = ed;
    dist[ed] = 0;
    numbs[0] = 1;
    while(font != rear) {
        int u = q[font++];
        for (int i = g[u]; i; i = e[i].nxt) {
            if (e[i ^ 1].cap == 0 || dist[e[i].v] < maxn) continue;
            dist[e[i].v] = dist[u] + 1;
            ++numbs[dist[e[i].v]];
            q[rear++] = e[i].v;
        }
    }
}
int maxflow() {
    rev_bfs();
    int u,totalflow = 0;
    int curg[maxn],revpath[maxn];
    for(int i = 0; i <= n; ++i) curg[i] = g[i];
    u = st;
    while(dist[st] < n) {
        if(u == ed) {   // find an augmenting path
            int augflow = INF;
            for(int i = st; i != ed; i = e[curg[i]].v)
                augflow = min(augflow,e[curg[i]].cap);
            for(int i = st; i != ed; i = e[curg[i]].v) {
                e[curg[i]].cap -= augflow;
                e[curg[i] ^ 1].cap += augflow;
                e[curg[i]].flow += augflow;
                e[curg[i] ^ 1].flow -= augflow;
            }
            totalflow += augflow;
            u = st;
        }
        int i;
        for(i = curg[u]; i; i = e[i].nxt)
            if(e[i].cap > 0 && dist[u] == dist[e[i].v] + 1) break;
        if(i) {   // find an admissible arc,then Advance
            curg[u] = i;
            revpath[e[i].v] = i ^ 1;
            u = e[i].v;
        } else {    // no admissible arc,then relabel this vertex
            if(0 == (--numbs[dist[u]])) break;    // GAP cut,Important!
            curg[u] = g[u];
            int mindist = n;
            for(int j = g[u]; j; j = e[j].nxt)
                if(e[j].cap > 0) mindist = min(mindist,dist[e[j].v]);
            dist[u] = mindist + 1;
            ++numbs[dist[u]];
            if(u != st)
                u = e[revpath[u]].v;    // Backtrack
        }
    }
    return totalflow;
}

bool lowbound_flow() {
    if (maxflow() != should) return false;
    return true;
}

int ans[maxm];
int main () {
    scanf("%d%d",&n,&m);
    init();
    if (!lowbound_flow()) puts("NO");
    else {
        puts("YES");
        for (int i = 2; i <= cnt; i++) ans[id[i]] = e[i].flow;
        for (int i = 1; i <= m; i++) printf("%d\n",ans[i] + low[i]);
    }
    return 0;
}

猜你在找的React相关文章