求一个无源无汇的有上下界的最大流。分析:
把每条边的边容量重设为上界-下界,记录每个点的最小进入in和最小输出流out,重设一个s、t,将s、t连向每一个点,边容量分别为每个点的in和out,从s到t跑最大流即
可。如果s的每条边满流,则有解,否则无解。
#include <cstdio> #include <algorithm> #include <queue> using namespace std; const int MAXN = 209,INF = 1e9; int n,m; struct Edge { int v,ne; int f,c,l; }edge[MAXN*MAXN]; int edgehead[MAXN],p = 1; int sum,in[MAXN],out[MAXN]; int dis[MAXN]; void add(int u,int v,int f,int l) { edge[p].v = v;edge[p].c = edge[p].f = f;edge[p].l = l; edge[p].ne = edgehead[u];edgehead[u] = p++; } int adv(int k) {return ((k-1)^1)+1;} bool bfs(int s,int t) { for(int i = 1; i <= n; ++i) dis[i] = INF; dis[t] = 0; queue<int> q; q.push(t); while(!q.empty()) { int u = q.front();q.pop(); for(int i = edgehead[u]; i; i = edge[i].ne) { int v = edge[i].v,f = edge[adv(i)].f; if(f && dis[v] > dis[u]+1) { dis[v] = dis[u]+1; q.push(v); } } } return dis[s] != INF; } int dfs(int now,int t,int flow) { if(now == t || flow == 0) return flow; int re = 0,tmp; for(int i = edgehead[now]; i; i = edge[i].ne) { int to = edge[i].v; if(dis[to] == dis[now]-1 && edge[i].f && (tmp = dfs(to,t,min(flow,edge[i].f)))) { re += tmp;flow -= tmp; edge[i].f -= tmp;edge[adv(i)].f += tmp; if(flow == 0) break; } } dis[now] = INF; return re; } int dinic(int s,int maxf) { int re = 0; while(bfs(s,t)) re += dfs(s,maxf); return re; } int main() { scanf("%d%d",&n,&m); for(int i = 1; i <= m; ++i) { int a,b,d; scanf("%d%d%d%d",&a,&b,&c,&d); in[b] += c;out[a] += c;sum += c; add(a,d-c,c); add(b,a,0); } for(int i = 1; i <= n; ++i) { if(in[i]) add(n+1,i,in[i],0),add(i,n+1,0); if(out[i]) add(i,n+2,out[i],add(n+2,0); } n += 2; if(dinic(n-1,n,INF) != sum) { puts("NO"); goto end; } puts("YES"); for(int i = 1; i <= m; ++i) printf("%d\n",edge[2*i-1].c-edge[2*i-1].f+edge[2*i-1].l); end:; return 0; }