SGU 194. Reactor Cooling (无源汇有上下界最大流

前端之家收集整理的这篇文章主要介绍了SGU 194. Reactor Cooling (无源汇有上下界最大流前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。

无源汇有上下界最大流

模板题了
SGU194

194. Reactor Cooling
              time limit per test: 0.5 sec.
          memory limit per test: 65536 KB
                   input: standard
                   output: standard

The terrorist group leaded by a well known international terrorist Ben Bladen is buliding a nuclear reactor to produce plutonium for the nuclear bomb they are planning to create. Being the wicked computer genius of this group,you are responsible for developing the cooling system for the reactor.

The cooling system of the reactor consists of the number of pipes that special cooling liquid flows by. Pipes are connected at special points,called nodes,each pipe has the starting node and the end point. The liquid must flow by the pipe from its start point to its end point and not in the opposite direction.

Let the nodes be numbered from 1 to N. The cooling system must be designed so that the liquid is circulating by the pipes and the amount of the liquid coming to each node (in the unit of time) is equal to the amount of liquid leaving the node. That is,if we designate the amount of liquid going by the pipe from i-th node to j-th as fij,(put fij = 0 if there is no pipe from node i to node j),for each i the following condition must hold:

sum(j=1..N,fij) = sum(j=1..N,fji)

Each pipe has some finite capacity,therefore for each i and j connected by the pipe must be fij ≤ cij where cij is the capacity of the pipe. To provide sufficient cooling,the amount of the liquid flowing by the pipe going from i-th to j-th nodes must be at least lij,thus it must be fij ≥ lij.

Given cij and lij for all pipes,find the amount fij,satisfying the conditions specified above.
Input
The first line of the input file contains the number N (1 ≤ N ≤ 200) - the number of nodes and and M — the number of pipes. The following M lines contain four integer number each - i,j,lij and cij each. There is at most one pipe connecting any two nodes and 0 ≤ lij ≤ cij ≤ 105 for all pipes. No pipe connects a node to itself. If there is a pipe from i-th node to j-th,there is no pipe from j-th node to i-th.
Output
On the first line of the output file print YES if there is the way to carry out reactor cooling and NO if there is none. In the first case M integers must follow,k-th number being the amount of liquid flowing by the k-th pipe. Pipes are numbered as they are given in the input file.
Sample test(s)
Input
Test #1

4 6
1 2 1 2
2 3 1 2
3 4 1 2
4 1 1 2
1 3 1 2
4 2 1 2

Test #2

4 6
1 2 1 3
2 3 1 3
3 4 1 3
4 1 1 3
1 3 1 3
4 2 1 3
Output
Test #1

NO

Test #2

YES
1
2
3
2
1
1

直接贴代码

/* *********************************************** Author :xdlove Created Time :2015年09月03日 星期四 13时02分46秒 File Name :a.cpp ************************************************ */

#pragma comment(linker,"/STACK:1024000000,1024000000")
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <memory.h>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>

using namespace std;


#define REP_ab(i,a,b) for(int i = a; i <= b; i++)
#define REP(i,n) for(int i = 0; i < n; i++)
#define REP_1(i,n) for(int i = 1; i <= n; i++)
#define DEP(i,n) for(int i = n - 1; i >= 0; i--)
#define DEP_N(i,n) for(int i = n; i >= 1; i--)
#define CPY(A,B) memcpy(A,B,sizeof(B))
#define MEM(A) memset(A,sizeof(A))
#define MEM_1(A) memset(A,-1,sizeof(A))
#define MEM_INF(A) memset(A,0x3f,sizeof(A))
#define MEM_INFLL(A) memset(A,0x3f3f,sizeof(A))
#define mid ((l + r) >> 1)
#define lson (l,mid,u << 1)
#define rson (mid + 1,r,u << 1 | 1)
#define ls (u << 1)
#define rs (u << 1 | 1)


typedef long long ll;
typedef unsigned long long ull;
const int INF = 0x3f3f3f3f;
const ll INFLL = 0x3f3f3f3f3f3f3f3f;
const int MAXN = 220 + 5;
const int MAXM = 100000 + 5;
const int mod = 1e9 + 7;

struct Edge
{
    int to,next,cap,flow;
} edge[MAXM]; //注意是MAXM
int tol;
int head[MAXN];
int gap[MAXN],dep[MAXN],cur[MAXN];
void init()
{
    tol = 0;
    memset(head,-1,sizeof(head));
}
void addedge(int u,int v,int w,int rw = 0)
{
    edge[tol].to = v;
    edge[tol].cap = w;
    edge[tol].flow = 0;
    edge[tol].next = head[u];
    head[u] = tol++;
    edge[tol].to = u;
    edge[tol].cap = rw;
    edge[tol].flow = 0;
    edge[tol].next = head[v];
    head[v] = tol++;
}
int Q[MAXN];
void BFS(int start,int end)
{
    memset(dep,sizeof(dep));
    memset(gap,0,sizeof(gap));
    gap[0] = 1;
    int front = 0,rear = 0;
    dep[end] = 0;
    Q[rear++] = end;
    while(front != rear)
    {
        int u = Q[front++];
        for(int i = head[u]; i != -1; i = edge[i].next)
        {
            int v = edge[i].to;
            if(dep[v] != -1)continue;
            Q[rear++] = v;
            dep[v] = dep[u] + 1;
            gap[dep[v]]++;
        }
    }
}
int S[MAXN];
int sap(int start,int end,int N)
{
    BFS(start,end);
    memcpy(cur,head,sizeof(head));
    int top = 0;
    int u = start;
    int ans = 0;
    while(dep[start] < N)
    {
        if(u == end)
        {
            int Min = INF;
            int inser;
            for(int i = 0; i < top; i++)
                if(Min > edge[S[i]].cap - edge[S[i]].flow)
                {
                    Min = edge[S[i]].cap - edge[S[i]].flow;
                    inser = i;
                }
            for(int i = 0; i < top; i++)
            {
                edge[S[i]].flow += Min;
                edge[S[i]^1].flow -= Min;
            }
            ans += Min;
            top = inser;
            u = edge[S[top]^1].to;
            continue;
        }
        bool flag = false;
        int v;
        for(int i = cur[u]; i != -1; i = edge[i].next)
        {
            v = edge[i].to;
            if(edge[i].cap - edge[i].flow && dep[v]+1 == dep[u])
            {
                flag = true;
                cur[u] = i;
                break;
            }
        }
        if(flag)
        {
            S[top++] = cur[u];
            u = v;
            continue;
        }
        int Min = N;
        for(int i = head[u]; i != -1; i = edge[i].next)
            if(edge[i].cap - edge[i].flow && dep[edge[i].to] < Min)
            {
                Min = dep[edge[i].to];
                cur[u] = i;
            }
        gap[dep[u]]--;
        if(!gap[dep[u]])return ans;
        dep[u] = Min + 1;
        gap[dep[u]]++;
        if(u != start)u = edge[S[--top]^1].to;
    }
    return ans;
}

int del[MAXN];
int down[MAXM];


int main()
{
    //freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);
    //srand((unsigned)time(NULL));
    int n,m;
    while(~scanf("%d %d",&n,&m))
    {
        int s,t;
        s = 0,t = n + 1;
        MEM(del);
        init();
        REP(i,m)
        {
            int u,v,low,up;
            scanf("%d %d %d %d",&u,&v,&low,&up);
            addedge(u,up - low);
            down[i] = low;
            del[u] -= low;
            del[v] += low;
        }
        int sum = 0;
        REP_1(i,n)
        {
            if(del[i] > 0) sum += del[i];
            if(del[i] > 0) addedge(s,i,del[i]);
            if(del[i] < 0) addedge(i,t,-del[i]);
        }
        if(sap(s,n + 2) < sum) puts("NO");
        else 
        {
            puts("YES");
            for(int i = 0; i < 2 * m; i += 2)
                printf("%d\n",down[i / 2] + edge[i].flow);
        }
    }
    return 0;
}

猜你在找的React相关文章