两种高效的服务器设计模型:Reactor和Proactor模型

前端之家收集整理的这篇文章主要介绍了两种高效的服务器设计模型:Reactor和Proactor模型前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。

此篇文章写的不错


Reactor模型

Reactor模式是处理并发I/O比较常见的一种模式,用于同步I/O,中心思想是将所有要处理的I/O事件注册到一个中心I/O多路复用器上,同时主线程/进程阻塞在多路复用器上;一旦有I/O事件到来或是准备就绪(文件描述符或socket可读、写),多路复用器返回并将事先注册的相应I/O事件分发到对应的处理器中。
  Reactor是一种事件驱动机制,和普通函数调用的不同之处在于:应用程序不是主动的调用某个API完成处理,而是恰恰相反,Reactor逆置了事件处理流程,应用程序需要提供相应的接口并注册到Reactor上,如果相应的事件发生,Reactor将主动调用应用程序注册的接口,这些接口又称为“回调函数”。用“好莱坞原则”来形容Reactor再合适不过了:不要打电话给我们,我们会打电话通知

Reactor模式与Observer模式在某些方面极为相似:当一个主体发生改变时,所有依属体都得到通知。不过,观察者模式与单个事件源关联,而反应器模式则与多个事件源关联 。

在Reactor模式中,有5个关键的参与者:

  • 描述符(handle):由操作系统提供的资源,用于识别每一个事件,如Socket描述符、文件描述符、信号的值等。在Linux中,它用一个整数来表示。事件可以来自外部,如来自客户端的连接请求、数据等。事件也可以来自内部,如信号、定时器事件。
  • 同步事件多路分离器(event demultiplexer):事件的到来是随机的、异步的,无法预知程序何时收到一个客户连接请求或收到一个信号。所以程序要循环等待并处理事件,这就是事件循环。在事件循环中,等待事件一般使用I/O复用技术实现。在linux系统上一般是select、poll、epol_waitl等系统调用,用来等待一个或多个事件的发生。I/O框架库一般将各种I/O复用系统调用封装成统一的接口,称为事件多路分离器。调用者会被阻塞,直到分离器分离的描述符集上有事件发生。
  • 事件处理器(event handler):I/O框架库提供的事件处理器通常是由一个或多个模板函数组成的接口。这些模板函数描述了和应用程序相关的对某个事件的操作,用户需要继承它来实现自己的事件处理器,即具体事件处理器。因此,事件处理器中的回调函数一般声明为虚函数,以支持用户拓展。
  • 具体的事件处理器(concrete event handler):是事件处理器接口的实现。它实现了应用程序提供的某个服务。每个具体的事件处理器总和一个描述符相关。它使用描述符来识别事件、识别应用程序提供的服务。
  • Reactor 管理器(reactor):定义了一些接口,用于应用程序控制事件调度,以及应用程序注册删除事件处理器和相关的描述符。它是事件处理器的调度核心。 Reactor管理器使用同步事件分离器来等待事件的发生。一旦事件发生,Reactor管理器先是分离每个事件,然后调度事件处理器,最后调用相关的模 板函数来处理这个事件。

可以看出,是Reactor管理器并不是应用程序负责等待事件、分离事件和调度事件。Reactor并没有被具体的事件处理器调度,而是管理器调度具体的事件处理器,由事件处理器对发生的事件作出处理,这就是Hollywood原则。应用程序要做的仅仅是实现一个具体的事件处理器,然后把它注册到Reactor管理器中。接下来的工作由管理器来完成:如果有相应的事件发生,Reactor会主动调用具体的事件处理器,由事件处理器对发生的事件作出处理。


应用场景

场景: 长途客车在路途上,有人上车有人下车,但是乘客总是希望能够在客车上得到休息。
传统做法: 每隔一段时间(或每一个站),司机或售票员对每一个乘客询问是否下车。
Reactor做法:汽车是乘客访问的主体(Reactor),乘客上车后,到售票员(acceptor)处登记,之后乘客便可以休息睡觉去了,当到达乘客所要到达的目的地时(指定的事件发生,乘客到了下车地点),售票员将其唤醒即可。


为什么使用Reactor

网络编程为什么要用反应堆?有了I/O复用,有了epoll已经可以使服务器并发几十万连接的同时,维持高TPS了,难道这还不够吗?

答案是,技术层面足够了,但在软件工程层面却是不够的。


程序使用IO复用的难点在哪里呢?

1个请求可能由多次IO处理完成,但相比传统的单线程完整处理请求生命期的方法,IO复用在人的大脑思维中并不自然,因为,程序员编程中,处理请求A的时候,假定A请求必须经过多个IO操作A1-An(两次IO间可能间隔很长时间),每经过一次IO操作,再调用IO复用时,IO复用的调用返回里,非常可能不再有A,而是返回了请求B。即请求A会经常被请求B打断,处理请求B时,又被C打断。这种思维下,编程容易出错。


形象例子:

本部分和下部分内容来自:高性能网络编程6--reactor反应堆与定时器管理

传统编程方法就好像是到了银行营业厅里,每个窗口前排了长队,业务员们在窗口后一个个的解决客户们的请求。一个业务员可以尽情思考着客户A依次提出的问题,例如:
“我要买2万XX理财产品。“
“看清楚了,5万起售。”
“等等,查下我活期余额。”
“余额5万。”
“那就买 5万吧。”
业务员开始录入信息。
”对了,XX理财产品年利率8%?”
“是预期8%,最低无利息保本。“
”早不说,拜拜,我去买余额宝。“
业务员无表情的删着已经录入的信息进行事务回滚。
”下一个!“
用了IO复用则是大师业务员开始挑战极限,在超大营业厅里给客户们人手一个牌子,黑压压的客户们都在大厅中,有问题时举牌申请提问,大师目光敏锐点名指定某人提问,该客户迅速得到大师的答复后,要经过一段时间思考,查查自己的银袋子,咨询下LD,才能再次进行下一个提问,直到得到完整的满意答复退出大厅。例如:大师刚指导A填写转帐单的某一项,B又来申请兑换泰铢,给了B兑换单后,C又来办理定转活,然后D与F在争抢有限的圆珠笔时出现了不和谐现象,被大师叫停业务,暂时等待。
这就是基于事件驱动的IO复用编程比起传统1线程1请求的方式来,有难度的设计点了,客户们都是上帝,既不能出错,还不能厚此薄彼。
当没有反应堆时,我们可能的设计方法是这样的:大师把每个客户的提问都记录下来,当客户A提问时,首先查阅A之前问过什么做过什么,这叫联系上下文,然后再根据上下文和当前提问查阅有关的银行规章制度,有针对性的回答A,并把回答也记录下来。当圆满回答了A的所有问题后,删除A的所有记录。

在程序中:

某一瞬间,服务器共有10万个并发连接,此时,一次IO复用接口的调用返回了100个活跃的连接等待处理。先根据这100个连接找出其对应的对象,这并不难,epoll的返回连接数据结构里就有这样的指针可以用。接着,循环的处理每一个连接,找出这个对象此刻的上下文状态,再使用read、write这样的网络IO获取此次的操作内容,结合上下文状态查询此时应当选择哪个业务方法处理,调用相应方法完成操作后,若请求结束,则删除对象及其上下文。

这样,我们就陷入了面向过程编程方法之中了,在面向应用、快速响应为王的移动互联网时代,这样做早晚得把自己玩死。我们的主程序需要关注各种不同类型的请求,在不同状态下,对于不同的请求命令选择不同的业务处理方法。这会导致随着请求类型的增加,请求状态的增加,请求命令的增加,主程序复杂度快速膨胀,导致维护越来越困难,苦逼的程序员再也不敢轻易接新需求、重构。

反应堆是解决上述软件工程问题的一种途径,它也许并不优雅,开发效率上也不是最高的,但其执行效率与面向过程的使用IO复用却几乎是等价的,所以,无论是Nginx、memcached、redis等等这些高性能组件的代名词,都义无反顾的一头扎进了反应堆的怀抱中。
反应堆模式可以在软件工程层面,将事件驱动框架分离出具体业务,将不同类型请求之间用OO的思想分离。通常,反应堆不仅使用IO复用处理网络事件驱动,还会实现定时器来处理时间事件的驱动(请求的超时处理或者定时任务的处理),就像下面的示意图:


这幅图有5点意思:

(1)处理应用时基于OO思想,不同的类型的请求处理间是分离的。例如,A类型请求是用户注册请求,B类型请求是查询用户头像,那么当我们把用户头像新增多种分辨率图片时,更改B类型请求的代码处理逻辑时,完全不涉及A类型请求代码修改

(2)应用处理请求的逻辑,与事件分发框架完全分离。什么意思呢?即写应用处理时,不用去管何时调用IO复用,不用去管什么调用epoll_wait,去处理它返回的多个socket连接。应用代码中,只关心如何读取、发送socket上的数据,如何处理业务逻辑。事件分发框架有一个抽象的事件接口,所有的应用必须实现抽象的事件接口,通过这种抽象才把应用与框架进行分离。

(3)反应堆上提供注册、移除事件方法,供应用代码使用,而分发事件方法,通常是循环的调用而已,是否提供给应用代码调用,还是由框架简单粗暴的直接循环使用,这是框架的自由。

(4)IO多路复用也是一个抽象,它可以是具体的select,也可以是epoll,它们只必须提供采集到某一瞬间所有待监控连接中活跃的连接。

(5)定时器也是由反应堆对象使用,它必须至少提供4个方法包括添加删除定时器事件,这该由应用代码调用。最近超时时间是需要的,这会被反应堆对象使用,用于确认select或者epoll_wait执行时的阻塞超时时间,防止IO的等待影响了定时事件的处理。遍历也是由反应堆框架使用,用于处理定时事件。

Reactor的几种模式

参考资料:Scalable IO in Java

在web服务中,很多都涉及基本的操作:read request、decode request、process service、encod reply、send reply等。

1 单线程模式

这是最简单的单Reactor单线程模型。Reactor线程是个多面手,负责多路分离套接字,Accept新连接,并分派请求到处理器链中。该模型适用于处理器链中业务处理组件能快速完成的场景。不过这种单线程模型不能充分利用多核资源,所以实际使用的不多。

2 多线程模式(单Reactor)

该模型在事件处理器(Handler)链部分采用了多线程(线程池),也是后端程序常用的模型。

3 多线程模式(多个Reactor)

比起第二种模型,它是将Reactor分成两部分,mainReactor负责监听并accept新连接,然后将建立的socket通过多路复用器(Acceptor)分派给subReactor。subReactor负责多路分离已连接的socket,读写网络数据;业务处理功能,其交给worker线程池完成。通常,subReactor个数上可与cpu个数等同。



Proactor模型

Proactor是和异步I/O相关的。

在Reactor模式中,事件分离者等待某个事件或者可应用或个操作的状态发生(比如文件描述符可读写,或者是socket可读写),事件分离器就把这个事件传给事先注册的处理器(事件处理函数或者回调函数),由后者来做实际的读写操作
在Proactor模式中,事件处理者(或者代由事件分离者发起)直接发起一个异步读写操作(相当于请求),而实际的工作是由操作系统来完成的。发起时,需要提供的参数包括用于存放读到数据的缓存区,读的数据大小,或者用于存放外发数据的缓存区,以及这个请求完后的回调函数等信息。事件分离者得知了这个请求,它默默等待这个请求的完成,然后转发完成事件给相应的事件处理者或者回调。

可以看出两者的区别:Reactor是在事件发生时就通知事先注册的事件(读写由处理函数完成);Proactor是在事件发生时进行异步I/O(读写由OS完成),待IO完成事件分离器才调度处理器来处理。


举个例子,将有助于理解Reactor与Proactor二者的差异,以读操作为例(类操作类似)。
在Reactor(同步)中实现读:
- 注册读就绪事件和相应的事件处理器
- 事件分离器等待事件
- 事件到来,激活分离器,分离器调用事件对应的处理器。
- 事件处理器完成实际的读操作,处理读到的数据,注册新的事件,然后返还控制权。
Proactor(异步)中的读:
- 处理器发起异步读操作(注意:操作系统必须支持异步IO)。在这种情况下,处理器无视IO就绪事件,它关注的是完成事件
- 事件分离器等待操作完成事件
- 在分离器等待过程中,操作系统利用并行的内核线程执行实际的读操作,并将结果数据存入用户自定义缓冲区,最后通知事件分离器读操作完成。
- 事件分离器呼唤处理器。
- 事件处理器处理用户自定义缓冲区中的数据,然后启动一个新的异步操作,并将控制权返回事件分离器。


现行做法

开源C++框架:ACE

开源C++开发框架 ACE 提供了大量平台独立的底层并发支持类(线程、互斥量等)。 同时在更高一层它也提供了独立的几组C++类,用于实现Reactor及Proactor模式。 尽管它们都是平台独立的单元,但他们都提供了不同的接口。ACE Proactor在MS-Windows上无论是性能还在健壮性都更胜一筹,这主要是由于Windows提供了一系列高效的底层异步API。(这段可能过时了点吧) 不幸的是,并不是所有操作系统都为底层异步提供健壮的支持。举例来说, 许多Unix系统就有麻烦。因此, ACE Reactor可能是Unix系统上更合适的解决方。 正因为系统底层的支持力度不一,为了在各系统上有更好的性能,开发者不得不维护独立的好几份代码: 为Windows准备的ACE Proactor以及为Unix系列提供的ACE Reactor。真正的异步模式需要操作系统级别的支持。由于事件处理者及操作系统交互的差异,为Reactor和Proactor设计一种通用统一的外部接口是非常困难的。这也是设计通行开发框架的难点所在。

ACE是一个大型的中间件产品,代码20万行左右,过于宏大,一堆的设计模式,架构了一层又一层,使用的时候,要根据情况,看从那一层来进行使用。支持跨平台。
设计模式 :ACE主要应用了Reactor,Proactor等;
层次架构 :ACE底层是C风格的OS适配层,上一层基于C++的wrap类,再上一层是一些框架 (Accpetor,Connector,Reactor,Proactor等),最上一层是框架上服务;
可移植性 :ACE支持多种平台,可移植性不存在问题,据说socket编程在Linux下有不少bugs;
事件分派处理 :ACE主要是注册handler类,当事件分派时,调用其handler的虚挂勾函数。实现 ACE_Handler/ACE_Svc_Handler/ACE_Event_handler等类的虚函数
涉及范围 :ACE包含了日志,IPC,线程池,共享内存,配置服务,递归锁,定时器等;
线程调度 :ACE的Reactor是单线程调度,Proactor支持多线程调度;
发布方式 :ACE是开源免费的,不依赖于第三方库,一般应用使用它时,以动态链接的方式发布动态库;开发难度 :基于ACE开发应用,对程序员要求比较高,要用好它,必须非常了解其框架。在其框架下开发,往往new出一个对象,不知在什么地方释放好。

C网络库:libevent

libevent是一个C语言写的网络库,官方主要支持的是类linux操作系统,最新的版本添加了对windows的IOCP的支持。在跨平台方面主要通过select模型来进行支持
设计模式 :libevent为Reactor模式
层次架构:livevent在不同的操作系统下,做了多路复用模型的抽象,可以选择使用不同的模型,通过事件函数提供服务;
可移植性 :libevent主要支持linux平台,freebsd平台,其他平台下通过select模型进行支持,效率不是太高;
事件分派处理 :libevent基于注册的事件回调函数来实现事件分发
涉及范围 :libevent只提供了简单的网络API的封装,线程池,内存池,递归锁等均需要自己实现;
线程调度 :libevent的线程调度需要自己来注册不同的事件句柄;
发布方式 :libevent为开源免费的,一般编译为静态库进行使用;
开发难度 :基于libevent开发应用,相对容易,具体可以参考memcached这个开源的应用,里面使用了 libevent这个库。

改进方案:模拟异步

在改进方案中,我们将Reactor原来位于事件处理器内的read/write操作移至分离器(不妨将这个思路称为“模拟异步”),以此寻求将Reactor多路同步IO转化为模拟异步IO。

以读操作为例子,改进过程如下
- 注册读就绪事件及其处理器,并为分离器提供数据缓冲区地址,需要读取数据量等信息。
- 分离器等待事件(如在select()上等待)
- 事件到来,激活分离器。分离器执行一个非阻塞读操作(它有完成这个操作所需的全部信息),最后调用对应处理器。
- 事件处理器处理用户自定义缓冲区的数据,注册新的事件(当然同样要给出数据缓冲区地址,需要读取的数据量等信息),最后将控制权返还分离器。
如我们所见,通过对多路IO模式功能结构的改造,可将Reactor转化为Proactor模式。改造前后,模型实际完成的工作量没有增加,只不过参与者间对工作职责稍加调换。没有工作量的改变,自然不会造成性能的削弱。对如下各步骤的比较,可以证明工作量的恒定:
标准/典型的Reactor:
- 步骤1:等待事件到来(Reactor负责)
- 步骤2:将读就绪事件分发给用户定义的处理器(Reactor负责)
- 步骤3:读数据(用户处理器负责)
- 步骤4:处理数据(用户处理器负责)

改进实现的模拟Proactor:
- 步骤1:等待事件到来(Proactor负责)
- 步骤2:得到读就绪事件,执行读数据(现在由Proactor负责)
- 步骤3:将读完成事件分发给用户处理器(Proactor负责)
- 步骤4:处理数据(用户处理器负责)

对于不提供异步IO API的操作系统来说,这种办法可以隐藏socket API的交互细节,从而对外暴露一个完整的异步接口。借此,我们就可以进一步构建完全可移植的,平台无关的,有通用对外接口的解决方案。上述方案已经由Terabit P/L公司(http://www.terabit.com.au/)实现为TProactor。它有两个版本:C++和Java的。C++版本采用ACE跨平台底层类开发,为所有平台提供了通用统一的主动式异步接口。


Boost.Asio类库

Boost.Asio类库,其就是以Proactor这种设计模式来实现,参见:Proactor(The Boost.Asio library is based on the Proactor pattern. This design note outlines the advantages and disadvantages of this approach.),其设计文档链接:http://asio.sourceforge.NET/boost_asio_0_3_7/libs/asio/doc/design/index.html


转载自:http://blog.csdn.net/u013074465/article/details/46276967

参考资料

1、Reactor构架模式及框架概述

2、高性能网络编程6--reactor反应堆与定时器管理

3、Scalable IO in Java

4、Reactor - An Object Behavioral Pattern for Demultiplexing and Dispatching Handles for Synchronous Events

5、两种高性能I/O设计模式(Reactor/Proactor)的比较

6、Reactor模式及在DSS中的体现

7、高性能I/O设计模式Reactor和Proactor

8、Comparing Two High-Performance I/O Design Patterns

猜你在找的React相关文章