我希望使用Python以与在R中相同的方式预处理文档语料库.例如,给定初始语料库,语料库,我想最终得到一个预处理语料库,该语料库对应于使用以下语句生成的语料库R代码:
library(tm)
library(SnowballC)
corpus = tm_map(corpus,tolower)
corpus = tm_map(corpus,removePunctuation)
corpus = tm_map(corpus,removeWords,c("myword",stopwords("english")))
corpus = tm_map(corpus,stemDocument)
是否有一个简单或直接 – 最好是预先构建 – 在Python中执行此操作的方法?有没有办法确保完全相同的结果?
例如,我想预处理
@Apple ear pods are AMAZING! Best sound from in-ear headphones I’ve
ever had!
成
ear pod amaz best sound inear headphon ive ever
最佳答案
在预处理步骤中使nltk和tm之间的事情完全相同似乎很棘手,所以我认为最好的方法是使用rpy2在R中运行预处理并将结果拉入python:
原文链接:https://www.f2er.com/python/439748.htmlimport rpy2.robjects as ro
preproc = [x[0] for x in ro.r('''
tweets = read.csv("tweets.csv",stringsAsFactors=FALSE)
library(tm)
library(SnowballC)
corpus = Corpus(VectorSource(tweets$Tweet))
corpus = tm_map(corpus,c("apple",stemDocument)''')]
然后,您可以将其加载到scikit-learn中 – 您需要做的唯一事情是在CountVectorizer和DocumentTermMatrix之间匹配,删除长度小于3的条款:
from sklearn.feature_extraction.text import CountVectorizer
def mytokenizer(x):
return [y for y in x.split() if len(y) > 2]
# Full document-term matrix
cv = CountVectorizer(tokenizer=mytokenizer)
X = cv.fit_transform(preproc)
X
# <1181x3289 sparse matrix of type '
让我们验证这与R匹配:
tweets = read.csv("tweets.csv",stemDocument)
dtm = DocumentTermMatrix(corpus)
dtm
# A document-term matrix (1181 documents,3289 terms)
#
# Non-/sparse entries: 8980/3875329
# Sparsity : 100%
# Maximal term length: 115
# Weighting : term frequency (tf)
sparse = removeSparseTerms(dtm,0.995)
sparse
# A document-term matrix (1181 documents,309 terms)
#
# Non-/sparse entries: 4669/360260
# Sparsity : 99%
# Maximal term length: 20
# Weighting : term frequency (tf)