python – 用于快速多项式除法的fft除法

前端之家收集整理的这篇文章主要介绍了python – 用于快速多项式除法的fft除法前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。

我正在尝试使用快速傅立叶变换(fft)实现快速多项式除法.

这是我到目前为止所得到的:

from numpy.fft import fft,ifft
def fft_div(C1,C2):
    # fft expects right-most for significant coefficients
    C1 = C1[::-1]
    C2 = C2[::-1]
    d = len(C1)+len(C2)-1
    c1 = fft(list(C1) + [0] * (d-len(C1)))
    c2 = fft(list(C2) + [0] * (d-len(C2)))
    res = list(ifft(c1-c2)[:d].real)
    # Reorder back to left-most and round to integer
    return [int(round(x)) for x in res[::-1]]

这适用于相同长度的多项式,但如果长度不同则结果是错误的(我对RosettaCode’s extended_synthetic_division()函数进行基准测试):

# Most signficant coefficient is left
N = [1,-11,-22,1]
D = [1,-3,1,2]
# OK case,same length for both polynomials
fft_div(N,D)
>> [0,-8,-23,-1]
extended_synthetic_division(N,D)
>> ([1],[-8,-1])

# NOT OK case,D is longer than N (also happens if shorter)
D = [1,2,20]
fft_div(N,-1,4,-24,-19]
extended_synthetic_division(N,D)
>> ([],[1,1])

奇怪的是它看起来非常接近,但仍然有点偏离.我做错了什么?换句话说:如何将快速多项式除法(使用FFT)推广到不同大小的向量.

如果你能告诉我如何计算除法商(目前我只有余数),也可以获得奖励.

最佳答案
这是在这些lecture notes中找到的快速多项式除法算法的直接实现.

除法基于除数的快速/ FFT乘法与除数的倒数.我在下面的实现严格遵循经证明具有O(n * log(n))时间复杂度的算法(对于具有相同数量级的多项式),但是它的重点在于可读性而非效率.

from math import ceil,log
from numpy.fft import fft,ifft

def poly_deg(p):
    return len(p) - 1


def poly_scale(p,n):
    """Multiply polynomial ``p(x)`` with ``x^n``.
    If n is negative,poly ``p(x)`` is divided with ``x^n``,and remainder is
    discarded (truncated division).
    """
    if n >= 0:
        return list(p) + [0] * n
    else:
        return list(p)[:n]


def poly_scalar_mul(a,p):
    """Multiply polynomial ``p(x)`` with scalar (constant) ``a``."""
    return [a*pi for pi in p]


def poly_extend(p,d):
    """Extend list ``p`` representing a polynomial ``p(x)`` to
    match polynomials of degree ``d-1``.
    """
    return [0] * (d-len(p)) + list(p)


def poly_norm(p):
    """Normalize the polynomial ``p(x)`` to have a non-zero most significant
    coefficient.
    """
    for i,a in enumerate(p):
        if a != 0:
            return p[i:]
    return []


def poly_add(u,v):
    """Add polynomials ``u(x)`` and ``v(x)``."""
    d = max(len(u),len(v))
    return [a+b for a,b in zip(poly_extend(u,d),poly_extend(v,d))]


def poly_sub(u,v):
    """Subtract polynomials ``u(x)`` and ``v(x)``."""
    d = max(len(u),len(v))
    return poly_norm([a-b for a,d))])


def poly_mul(u,v):
    """Multiply polynomials ``u(x)`` and ``v(x)`` with FFT."""
    if not u or not v:
        return []
    d = poly_deg(u) + poly_deg(v) + 1
    U = fft(poly_extend(u,d)[::-1])
    V = fft(poly_extend(v,d)[::-1])
    res = list(ifft(U*V).real)
    return [int(round(x)) for x in res[::-1]]


def poly_recip(p):
    """Calculate the reciprocal of polynomial ``p(x)`` with degree ``k-1``,defined as: ``x^(2k-2) / p(x)``,where ``k`` is a power of 2.
    """
    k = poly_deg(p) + 1
    assert k>0 and p[0] != 0 and 2**round(log(k,2)) == k

    if k == 1:
        return [1 / p[0]]

    q = poly_recip(p[:k/2])
    r = poly_sub(poly_scale(poly_scalar_mul(2,q),3*k/2-2),poly_mul(poly_mul(q,p))

    return poly_scale(r,-k+2)


def poly_divmod(u,v):
    """Fast polynomial division ``u(x)`` / ``v(x)`` of polynomials with degrees
    m and n. Time complexity is ``O(n*log(n))`` if ``m`` is of the same order
    as ``n``.
    """
    if not u or not v:
        return []
    m = poly_deg(u)
    n = poly_deg(v)

    # ensure deg(v) is one less than some power of 2
    # by extending v -> ve,u -> ue (mult by x^nd)
    nd = int(2**ceil(log(n+1,2))) - 1 - n
    ue = poly_scale(u,nd)
    ve = poly_scale(v,nd)
    me = m + nd
    ne = n + nd

    s = poly_recip(ve)
    q = poly_scale(poly_mul(ue,s),-2*ne)

    # handle the case when m>2n
    if me > 2*ne:
        # t = x^2n - s*v
        t = poly_sub(poly_scale([1],2*ne),poly_mul(s,ve))
        q2,r2 = poly_divmod(poly_scale(poly_mul(ue,t),-2*ne),ve)
        q = poly_add(q,q2)

    # remainder,r = u - v*q
    r = poly_sub(u,poly_mul(v,q))

    return q,r

poly_divmod(u,v)函数返回多项式u和v的(商,余数)元组(如Python的标准divmod数字).

例如:

>>> print poly_divmod([1,-1],-1])
([1,1],[])
>>> print poly_divmod([3,-5,10,8],-3])
([3,-11],[41,-25])
>>> print poly_divmod([1,2])
([1],-1])
>>> print poly_divmod([1,20])
([],1])

即:

>(x ^ 2 – 1)/(x – 1)== x 1
>(2x ^ 3 – 5x ^ 2 10x 8)/(x ^ 2 2x -3)== 3x – 11,其余为41x – 25
>等等(最后两个例子是你的.)

猜你在找的Python相关文章