这更像是一个难题.我实际上找到了一个解决方案,但它太慢了我以为我丢失了我的网络连接(见下文).
这是问题所在:
假设我有一系列数字,如下所示:
$numbers_array = array(1,2,3,4,5,6,7,8,9);
我们也说我有一些数字,存储在变量中,如下所示:
$sum = 15; $sum2 = 24; $sum3 = 400;
我正在尝试创建一个函数,如果$numbers_array中的任何数字可以加在一起(每个只使用一次)以形成总和,则返回true:
function is_summable($array_of_nums,$sum_to_check) { //What to put here? } var_dump(is_summable($numbers_array,$sum)); var_dump(is_summable($numbers_array,$sum2)); var_dump(is_summable($numbers_array,$sum3));
以上应输出:
bool(true) bool(true) bool(false)
因为7 8 = 15,7 8 9 = 24,但1-9的组合不能产生200.
这是我极其缓慢的解决方案:
function is_summable($numbers,$sum) { //Sort provided numbers and assign numerical keys. asort($numbers); $numbers = array_values($numbers); //Var for additions and var for number of provided numbers. $total = 0; $numbers_length = count($numbers); //Empty var to fill below. $code = ''; //Loop and add for() loops. for ($i = 0; $i < $numbers_length; $i++) { $code .= 'for ($n' . $i . ' = 0; $n' . $i . ' < ' . $numbers_length . '; $n' . $i . '++) {'; if ($i != 0) { $code .= 'if ($n' . $i . ' != $n' . ($i - 1) . ') {'; } $code .= '$total += intval($numbers[$n' . $i . ']);'; $code .= 'if ($total == $sum) {'; $code .= 'return true;'; $code .= '}'; } //Add ending bracket for for() loops above. for ($l = 0; $l < $numbers_length; $l++) { $code .= '$total -= intval($numbers[$n' . $i . ']);'; if ($l != 0) { $code .= '}'; } $code .= '}'; } //Finally,eval the code. eval($code); //If "true" not returned above,return false. return false; } $num_arr = array(1,9); var_dump(is_summable($num_arr,24));
一如既往,感谢帮助!!
你的问题实际上是一个标准的算法问题(正如Jon提到的背包问题),更具体地说是
Subset sum problem.它可以在多项式时间内解决(看看
wiki page).
原文链接:https://www.f2er.com/php/136532.html伪代码:
initialize a list S to contain one element 0. for each i from 1 to N do let T be a list consisting of xi + y,for all y in S let U be the union of T and S sort U make S empty let y be the smallest element of U add y to S for each element z of U in increasing order do //trim the list by eliminating numbers close to one another //and throw out elements greater than s if y + cs/N < z ≤ s,set y = z and add z to S if S contains a number between (1 − c)s and s,output yes,otherwise no