我正在努力将JavaRDD(字符串是JSON字符串)转换为数据帧并显示它.我正在做类似下面的事情,
public void call(JavaRDDsqlContext = sqlContextSingleton.getInstance(filteredRDD.context());
DataFrame df = sqlContext.read().schema(SchemaBuilder.buildSchema()).json(filteredRDD);
df.show();
}
}
架构如下所示,
public static StructType buildSchema() {
StructType schema = new StructType(
new StructField[] { DataTypes.createStructField("student_id",DataTypes.StringType,false),DataTypes.createStructField("school_id",DataTypes.IntegerType,DataTypes.createStructField("teacher",true),DataTypes.createStructField("rank",DataTypes.createStructField("created",DataTypes.TimestampType,DataTypes.createStructField("created_user",DataTypes.createStructField("notes",DataTypes.createStructField("additional_data",DataTypes.createStructField("datetime",true) });
return (schema);
}
|student_id|school_id|teacher|rank|created|created_user|notes|additional_data|datetime|
+----------+------+--------+-----+-----------+-------+------------+--------+-------------+-----+-------------------+---------+---------------+--------+----+-------+-----------+
| null| null| null| null| null| null| null| null| null|
但是,当我没有指定架构并创建Dataframe时,
DataFrame df = sqlContext.read().json(filteredRDD);
这给我的结果如下,
|student_id|school_id|teacher|rank|created|created_user|notes|additional_data|datetime|
+----------+------+--------+-----+-----------+-------+------------+--------+-------------+-----+-------------------+---------+---------------+--------+----+-------+-----------+
| 1| 123| xxx| 3| 2017-06-02 23:49:10.410| yyyy| NULL| good academics| 2017-06-02 23:49:10.410|
示例JSON记录:
{"student_id": "1","school_id": "123","teacher": "xxx","rank": "3","created": "2017-06-02 23:49:10.410","created_user":"yyyy","notes": "NULL","additional_date":"good academics","datetime": "2017-06-02 23:49:10.410"}
对我做错的任何帮助?
最佳答案
问题是在我的json记录中,school_id是字符串类型,而spark显然无法从String转换为Integer.在这种情况下,它将整个记录视为null.我修改了我的模式,将school_id表示为StringType,解决了我的问题.有关它的一些很好的解释提供于:http://blog.antlypls.com/blog/2016/01/30/processing-json-data-with-sparksql/