导出查询结果到excle

前端之家收集整理的这篇文章主要介绍了导出查询结果到excle前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。

实现功能 输入查询结果 点击导出查询结果 导出到excle表。

cpu1IXm+GT/UPfjXs+pymGAtZAh9Cupngc5q28iF1vZlpPhxnvZlVdFiumwk9pykDH9LWmzn2c5pkWEfGZQbdTPA5TRn4QOvNJPAt8JymPP2D0808aN3Ma0brzcQ6kqnnNOXlA+lm9gPpZkg3Q+hAuhnSzRA8T5Bu5hC6GQKBQCAQCIfF/wFpzSwaCGZUaAAAAABJRU5ErkJggg==" alt="">

RSSWZ/NqDFKHVmOI9w87yuv4BnZbMTL4FvdprAtHSpntao51Wcs5M5f/g29kdae2U2a1pT7OE1/DblNQEzqZXIBUxrGkfTNXM1DhnXFIkPhKZildRkUD3tUd1qo7K+dtjqwOODob56xzzDA7JP954OdtzDhscOpMOq2dvzgms37jQddXRdWTXEm/u3aFzoSahvXcvNszKHWhYHwP7WMj4kWVX9DaeoAzuqHEQAKEhbq8gQMp8vPxVu3Ec1r2wMGQL0i50H5ocD6RIBWiFtcvtWWiuUF2GVn5I5sy4wrt/u09F723HVZ6WXG5xVW+ocDtyHxrNmf1a4RS13ljjXng8Gnr/43+O+ekp/92wJ+yYvT/+29mj3mv3DwZMaXIJ7N26peQr1ROLDQdBj/3W7s0hDe4UtGDVcmDSbR02AnNXUiR9MkDVNDK2FYWoymCR1P6+s5ZIW2bSKUS4nUh7VtVdaMO+FJ0LUXtcdPOYZDmTsbXfVrFvt/km1stI+uAAR/GNRrV9WW1c8F5XkXtedNisfd+BYYuNl07Ka4po2B9SByiePXFfxROoPzo+9mUWuWwTaWj/MagQcLgm0xjFVEB2uVQS8jBgQBzN8HriGFbdhKvLc6WnuxvTWJlh44DjvThCZr+z2za1TywHT8+Wk6c2D/OCs2movgFGz73Hm/HtecL66f2/d2Xvq9kFwhljv+v0A4Gw9GohXe/zAWPfosBe52KGAfQ1EENCKcjh4i2dV0ZhoX9PiBonmMsQEQuNbm3RkYlmkonkcfKsuLysqnfKoDv554JCO+3W+dOr0b+OtWHUs8fKrc6cGyWswJ3eh5uRoVMcluQVOm1qQa2WSFjdLDlDukFg668IRKzp3MdNmRUQctJq9COAgFBQ4ERA7/3FqiPEkp0MiFqwSnBuyiIURW23ANFL38mHFXWuxMGHPKlB1DqzTP5SGNOoFcM89P+zgiiN1htjpvbq7Eml0O3Vk0q9HO1oadmJrPZioazT7u3h02EgzxxS0e+A9b4HDBOPXWsawE1BcgG9QkOaDtWi0gEVw2lqoZuFTVqE0mO6xxCdd+Hmf282Xa8bMsJo/6zn7d0vNJdCxTkFbtGAwZpqyl8m4cPLx0fr77eMDGIbCFCMUxzIXkNRqHiJg1kizwmk1rGDQWREwQzY5hENAFslohFkoCZiXybwiIByjUCqiSIQ3XbHysEhRzWcs6gbi+pFaV/fc/Gs/ny7PjVdX9x8uwzryIW5q0OZsP2p1yu5tKG8h0wRvy8ePhqfxwiVQK/NO9/IxUWe2adZIsVXELGr0rA2d1aDZqJIRKs5qDXL9+BMVUUBTN8slO37ymgVNPqNRHVSpLbqXqrkQnDxaf7j9dAD/MFQbcXc/vQXOcNfgcKm0VVd7OOone9Xls2DH8pw7sRrxnwGnIWioTyaHwJhomSTzSyAC6D/GS1FryGhJUDE5IXHghZKK1Rr+4DHLKkDqC0ec37j3+PIRzH+cryxc7NkH7K6ZUStkQo5Csvdwbks8X3l81Nt+5G0NZKuP3NVBm8/aTi3ESLm882Swg0EOJ+rajfqW6uGs+y3mBQ5rWxfsHKpg06dJ8jaQ0yBmanELIKyZgqSVycW4BeJbmZiLWdwxTpOFSEQWozp36ZvDNsBG8vByF/e9ll9vV9fhruj5B3cr7tRdpKrp+qAm/JRWt2f3YLRSFTbeLl/nSxLsCrnkBtQwiidYJjiXjBSYAATM357JMRGwKppiVg7q8iy5EByNiTRskljbbcHdAnllhgCuUR6uscms1LwXpG5SXT6y19Te9aoTdcZhOEUNMyOnaush3P6qjG1SnDu8zLYutovBjWRwrlmoJh/Q5kOWqY4cMhKgDpJarpY0Bai41J9CbBnSqaVsV+B3rl7ugoBr9urrOHBXlDz1CPX/Y9By3xEm9se0Jjqg/ir1fb3yPCnAN695nKbQeE2yCpDkwhJ+sHDoODhQdf1UuNg0tFZ02sVN42qGurCi3Glt1QGNkrozuNSs1EuN1QwdkKIEgVAItJ8tO2olnPUFa+x6+ozDhB5NbX1VkyMwWHRNlq/1ndMln5VQ1kKLwOSt4pRNIldX7Yn31mDyBio4XBl+cpmAvgBsQi4XNmk/9ZRHdXDLo2nO0l3cri8131ftqXrEQP2171xy+Xi3vvxw/6qKx109ettX1Aw5gGNzAP7HlO7uuzV9glcBhvOQhTUSP3m14DTGoVUsU4DEQBLfeQBgWh8ROrBCIXOCMAG4pi0plj44Q0X7XbJYhvOudHEw/DfYGnRPqmq9V2vOH9yVV8ThURqlm23Xe7Vbonp5y2eEktcA0/Ubdrw69dtslTnD012ebuJp69E8J92Jug9Vz+nNkpy/uuI/avTUZvrNGzFwBBs0atb8XAMtyuI0ME2DmgAqApPeZCqYAK/oHSxpzQVd0xPgaMGaHLRmVf+UtaSkmO5zoZyjSr3pWcQdD7WDF/XSZqm16d5FZdXXE6Pv2sHTVxt3Sq4+6CYzqIMnqpgOqLWlyxV0VT2FOMgrcq8ABNYes9JgVcNPHqYpqdU/Llw8msI3o6YsiNrM5VAE53LJGLRmXEvGMCgqgkA0BGrPu8N1+qAHS7iK/ET3aMiEklY7XsdedjzV8/nPdltqe5+1RxuacCfqcOsrzJKs1Sul9Ynd7ljpmSEOIUWCklZHSAZysa2DT2ByYUxqTBBAXS4ZprVELVOX20HaLNGUAY7psOZGmLK45VK/38f0y5cvq1XYaiOvdBGY7anGvH5odU6rSX4ocAumDNkMac20kBQnS5wxar+QA3IJLr+o0WZIMTASLOnnoV/pYfhZ4hzGn6LKCM7ZXFnBeU5whqaM2iuisX0z+abPpGJmESdYBssCYSoOaK5CAg/fX3UAACAASURBVGSQC3NJLsD5VgtcmBeNfFQx+VxLRnUcjSxoaTWyQFn9/BqDQS6euJkNHmmVIjinhey4XcF5HI+0UoJzWsiO2xWcx/FIMpXyurokXRVbgoAgIAgIAoKAICAICAK+CJQ6nQ5lbmxsEC2EICAICAKCgCAgCAgCgkCOEJA7sFlfLJl5zgZxwTkjnN9r8IJmeTI696NwdElwzuSaCs6ZwCwrZFKEWe7ApgiumBYEFgoBGdJlc7kFZ8E5GwSklDwiIKO6PF61aX02t96YHCyD8zk9rQe51ecgcNoa0EQBq1YAkxvkNKkAM+BNYmkQMtRIA1XTpuBsYpIGR3BOA9U0bGKLB5atTaJWYhgZTYVb9lNHfnBugFlehCkWlZPu8+qUN8MznoGCx34+2Rk+jnK1Udp0H9JqHkgHWevXR5LqqTxN9/k9cNpxB08Ps0SpaQXYd5VtXrFTxUDGdMxSak5ZsC8a6h/tjuZ01Ij86jHYIftRbc6zvAmd5m3UqBMH0M+BgIK0EGIk89IF5v03LjjHqJwxVGaEc5hebFLX5lgEvGo/6oIV5+wk70/hpjZNa/SAP5Gj1QpUIYOYqxkBJnBM42SK5DU7IKBxUFKzpslgcWQ8PJH2qG61UVlfO2x14EmJ8IBs75hneED26d7Twc4bddjw2IF0WCN7e14E7cadpqOOriurcdjm/i0aF3oS6tvU8rOPWnavumdL+JBkbrp4NFUdIiBGpKlSho/aT4UbD28tF5IYMgToFzuPwg8H0iUCtELa5PattFYoL8IqPyVzRl1gHK9z/RsXnONc8ug6M8I5VC/m33UO47QIqBOe+oeDJzXogu/duNWBh0KrRxMfDnL/pH1s2bTmDoAA/sS2FLWobUQV1EUoUcC0QyooMMR9vA/lMmiZPkkeCZQ0S4Fczb6mGJBMeVTXXmnBOQ14IkTtdd1Zd495hgMZe9vdN+BW7f5JtbLSPrgAEfw/Ua1fVltXPI+V5F7XfTR5+bgDxxIbLz8t0/5I1e4VnNPSu35/JFVgiuocj9GsQ1pVM+ulqYIGrfZ5WXmnERkzfB64hh4P2VTkudPT3I3prU2w8MBx3p0gMjfZef6NC87ZVKNZ4By6F7N3nQwYH4Fqr8KE3DPEXhT7YZ4BbSA2vyCgtcPECWi6GYpjN6OsKhoT7ZuOoRh8+hnn/DB0yqO62vMBDum4L+dLp07/Nt6KVccSL7tDPce5BnNyF2pOjkZ1XJJb4HSwFrdPWlavHHVOy+m9unu3dzRTTUqLTGi1k6AwKyhlFZVAKChwIiBe/rPUEONJTodEKVglODdkEYshJr/xbK6z4BwR55C9mOPTdVJpvMekvg9yj5a6jqO63LUeTNQ1mv1dPEOMFHNIQLtHXhNNBGTxxhmSlKXxyUgYAo1MtOAnBoo8i9PcYeSH8ccqk/KojpXpHkt80oWadc64jCzXjAnh7tJRtefs3y01l0DQenvUosVsTiSZV/CDcbYftTpld9bQu1k80UJRBaBimXUXKyXnm/WP5xYPHCsCZsgmh6AIyCIZjTALJQHzMplXBIRjFEpFFIdQfZ78xtO/noJzRIyn7MUmlKaOOL9bUWMgmK24gHnB070iTNRRm0ZtIBEcEGoPUZ6SXAZoq64mA0lsipFPpsgTkjfLsgpza6Q7PZHRqA5q0hbdS43k9dH6w+2nA/hjodbV3d0f7aKIZMUuPOYVu8Nb3jmpNzeftZ2aOdFot5QzLtUwP795Fec0yGNF5PWY0xMt+5WYIz7/KWK8FLWGlZaEGE1OyMB5oaRitYaXA7OsAqS+cMQi/cZneXEF51mibym7vPNksIP84USdWtGutisWc1Mgb/eoPbTgwljWBpblW0hUQfuWbJel5YJjfpLAD84NUNSyshjVuYsGHLYBVvMhOHm5i/tey6+3q+tnXef8g7sVd+ouUo10fVATfqQV6FXvetU5C/Yrt7laPbPGESwTnGs1WDAmIMAbDozO5JhRWxVNMSsHdXmWXAiORkS6yL/xiFCkKi44pwpvNOPDFXUwRXKq9iDCfbDK2G7FaNbmR5q3vZwO8BDEtFyzgdUEYiTNUgKMUHseScs0mPrz6iyDJ3W//wqspVMvdx3ANbgta31VelWDr/52DFru+7l9Ks1mX9OyeDVWEKwL6V3n60vHcouT4LWH0xQhMJOqamSzYIQVN4iRQ8dDBjz9VLjYNLRWdNrFTePq7HQX5Tc+O4SxZME51hWw9WKOlcnNTxBQW1/VLAksbXK1ytf6zumSz5Iobnd+aWzcsJPCppU6rGCnQSykZLCd4FwshT6DhZPKTXlUp/ZUm7N0F7frS833VyGG9vvrR/XX9sEZZJePd+vLD/evqmjbbzePLm/7iioR7zXJvtUr2PVdutl2TbiL7S5v+Y01vWJy+o0/A/oxUJcPNY9oDA2SvN6bAiQGkvjOKSaR3CaUKGROECYcukj2pxQGZ6hov0s2ZRF5VV+Y3/iML5DgnMAFsPZiViYvLEjAnaj7UHWh3nTJ+asr7v4JbiE3NLa61NaB38Ah7zlNTCC4vKnCc5HmHG6HaF4Qp1EAOPxNWpwgLZLkuTHodO/AqkEb7L+p1Juea7jjoXbwol7aLLU23fuhxiYJTxi+awdPX23cKbn6oBtqUKe0guz7ePW8O1xSCsXCagP3cSrMk6KSWGuhPmnVF6saVTgK35TUFEmykASFb0ZNWRC4mcvRCM7lkjFozbiWjGGwOCq1Bf2NZ30FBeckELf2YjamelD/2W7rwO0dbQLojTtRh1tfYbpkrV4prU/sf5OIIy0bWstGzS8RkQomLSQoaTVCMpCLbsAnMDVhzUMtl5IkRgRlxSNK/X4fNV++fFmtwhYxeaWLwGxPneeVVauFIasUt2AiRTZDWjMtJMXJEmeM2i/kgFyCyy9qtBlSDIwES/p56Fd6GH6WOIfxp6gygnM2V1ZwzhfO1tY1gGlGx1tFUKQk0Zo14pumKAtVTAHiUCnE4YRWIs8KQ8uoLgxKScpIq5Ekmv62BGd/bJLMEZyTRNPfluDsj02SOYJzkmj62xKc/bGZNifldXXTuif6goAgIAgIAoKAICAICAKhECh1Oh0S3NjYIFoIQUAQEAQEAUFAEBAEBIEcISB3YLO+WDLznA3ignNGOL/X4AXN6GR07kIx6ZLgnMmFFZwzgRlWADcGg2IfRZsNkJZS5A6sBRRhCQKCQAwEZEgXA7QYKoJzDNBiqAjOMUATlZkjIKO6mV+CGThg7tAxOegW53N6Bk5LkfONgHSB2VwfwVlwzgaBXJcCvRV2WDG6LVIhQoMi2HKwFpryk9EKipdMf1QHh5MMH8R3d3/0EOvVxpA5fPAv8x6yuCQ8jGf4HL8NfBwxE2WkphVg31Wye0VZ3AFWSFFI2FbNaxXQwRutA+IGXb93gJZkFQyBnA011M8/l79xwTmbH86McA7Ti03q2hyLAJyl5LbSozqvOA11EEDxXtgfQVxapwZ8ChZplKRPyiVC6yiJjwTZJwtIQK7JAaZmTZOBpGY/djLtUd1qo7K+duge8HXYb1ZGhzec7j2FIA/ry1tjdQtq5KY6dNh7tRt3mg6cWNcadE+c5iYbF3oS6tvU2vSxj1p2rzAPn1GMdCE/zZoHYRIzashwEa3vqHYWQx4q6qhhDR1yPK3Q5qcWnFEXGN/vnP7GBef4lzyK5oxwDtWLwblHgV2bYxFQZyn1D6Ghhi743g13akU9kfjwIOj5/1EAmy9Z7I9Mn4BPIyeiqfNCeRIgdRCgLOwlUQZpzOJGUJ4+MUuzBrqkQgTJTE+kPKprr7SqJ/fxRIja6/rw+NfVZ63e9q034H3t/km1tYLndLn/JzZP65fs7FcluffIPeahfNwZPNkxTvHy0zLtj8Cye+Xmt29unVoOnx3pFoKimsQJMzKsfMQHYazQxMGabX6SgBDFR+BB3kLM6W9ccM6mos0C59C9mL3rZMD4CFR7/FTz0dFhTHMRSOjCKEyitU6NBDRC6ysxyWXADtkEPtBWyygGn/zN7UxPp3timFN7PjAP+TpfOnX6t3F8pk4jXn517tQgeQ3m5C7KcHOkdWUYGJf0izVYi9snC1avVO5qY8s57F4+rCyTrBCAAFZEEwpeic1c4Ywj4P0Xr9x1uvj/RB3104Qz9dQJdc+HPxSo/xV1zh683OP1TC03Tz5iIiC/8ZjARVQTnKMAFrIXc3y6TiqK95jU90Hu0VIXjlUHYq1Xhm6u2d/Fo8NIsSgEdFUUCtFEQFakPgsVJ6r4idHADi1oYmSWu0fOT0OkPKpjrsHMMMzbdaFmjVbXsWyoczVjQri7dFTtObACoLkEoniG7JiOVUuTCEyOvAK/9tdP914cOCsPA1UWJBOqGlU7ChmrKeebNZLnkqIQjnNxMIAB8vr14ZAO7pXcaa69GHQu4J96pbE6UDdEru7fW97utjrwM4Ej0h/euF871rQEyWkQkN/4NOiF1xWcw2MFkpa+L5J+sHD5+NHwiPPeXle1Nm43F6yT11zqfaj/IoKHZGVyAaSxv0OaejoqguSRQwLAJ5oLc2ukmwaR0agOatIW3EvtuvdSI8VxtP5wG1bgvXHUHMbdfa9HjGTDT3jMK1h88PjyUQcKWvGTLwyf6pxfRCBA1ZHTII9Vk3KRQ3YmWibJhSfc1QVd9U+mfOuy2lxpH1y403VLzfdXd2CE5zujvPDIxQZgkX7jsUFKQFFwTgDEJE2Ud54MdtDgcKKu3ahvqbuR7C5BkgXOoy3ekcUYYJkdnxkk7xYhN7g3DM41jYfnZDGqU1MRTWcv5oDscndHrcBzyq+3q+tnXef8A7Cmpu4i1UjXhzEtzStYQL2224IpksK/tJpnjTdYJjjXalCYNgSWmpV6c5jRc9chvNnpvDgrbZZam8Cu7j3tYOW3KQsvKgKL8xuPikyy8oJzsngmaG04hwpTJKew3ukY7oN5dwkSLGReTPFhHKfRP+jFEh9XRTJI3WgkrTDgprxbQt3WNIZ06n7/FejD1MtdB3DNbzBVsWxcUH87hvsuvaVIWqA2+5qW4RVMnDitLXcBo1rVpLrbom785mjx+sRpkgFmepWPSllUAmavaQcx7QSCG7W4Z/zyqPk2biRaVHySjXtBf+PJghjCmuAcAqSJIrZezLEyuakJAmrrq5olgaVNrlb5Wt85XfJZEsXt5ozGvgx7LvjkvViqkXgjk2GrnmpZAcZTHtWpPdXmLN3F7bq6zQRuqUcM1F+bGyqGHpePd+vLD/Exde23m0eXt31FeYyT7Fu88rpS6FC7J1XH7W4LuvEbazzVeyQAPqz9HEftx2AKoDCI0ZurCx2IwKiWqiV0JXzoz/hDTMZ3rgVak8yJCCzQb3wiFmkKCM6JoDtqH1gvaWXy4oIE3Im6D1UX6k2XnL+64u6f4BbyTWNPBF0VhQEcP5qLIc05pMUJP2soQ/0gElyRaLJAwpSVFJHuHVhVHWH/zeg203DHQ+3gRX14mwnu6xubJFhwtYOnrzbulNzbVLBbItSgDh6YEmjfzytW7AKRWI+hhmkVGisfVUFCxJTUFElSCAOB3vWqmgY+O2wd1HgthX8RT9y6fXFwuFIa/l6A+dydxR7TMmwKQxAQBAqIgLUXszHVVvqzXdWkwMsmgOC4E3W49RWmS9bqldK6u4opqP/NHaxaZ0S9FREYESWRoKQ1XpKBXLQPn8DUhLWitVxKkhgRlJUUUer3+2jr5cuX1eppUnbFjh8Csz3VmFdfrV6GrGTcghkj2QxpzbSQFGe2OCcVxfzbEZyzuUaCs+CcDQLZlJJqfcZuSOuDTCbvy4jWxIhvwkJZqGIKEEfzhPhIaCVquTGS6c7VxXBIVFJFgFcvTocvNFgrODd8KSIpCAgCgoAgIAjEQMDaDZlMziGaCCxXS3JnKIsInhuenlLdLCjldXVmgcIRBAQBQUAQEAQEAUFAEEgBgVKn0yGzGxsbRAshCAgCgoAgIAgIAoKAIJAjBGRdXdYXK9X1BFkHM8flCc7ZXJzSew1e0IxORucuFJMWnLO5roJzRjiXGoPBQTZlLVopcgd20a64xCsIpIWADOnSQnbcruA8jkdaKcE5LWTFbpoIyKguTXTn1ba5Z8fkoO+cz+l5jSx1vzgInLYWPFHAqhXA5AY5TSrADHiTWBqEdIFpoGraFJxNTNLgCM5poDpvNqkVJULzEPlmLudwWlOfSTL9PbDq/Fb11DPHPdqXHqAPT1vddB8UaJ5DB1mjE9DVeecbd5qufuABSppWgH2O87gWPAx2a9nN5q5y+YLQsOkGKiJtveF01AgDKjTZj2pznuVN6DRvo0adOIB+DgQUpIUQI5mbLtDeHMWIeDYqgnM2uM8I5/H+yLH2YlYmR8Ui4B2YOerXFOfsZFDQJ+1zOLB301o/s5HUGnZuAWhTXhMwk1qJXCCGNa4+kU57VLfaqKyvHbY68IBEGDNVbl4bqGO+2o3N072ng5036ozhxiqrW1gje3ue4+3GnaajTqwrq+Z4c/8WjQs9CfVtavnZD9BabWwtw4OO4VmOqsZ7rnKFYtBU24iAuJCOUdv8VLjxYuBGUWDIEKBf7CRJwHIO0qRLBArzpKkVkqOBn4jNgKJn1AUGeOSXZW+O/KTnjS84Z3NFZoRzqF7Mv+scYmMRUGcp9Q8HT2rQBd+7catzXHbUE4mDn/+fDdQZlAKtn9a7YdJswKmd1NpPTT2kz2RNk9eMa7mJJFMe1bVXWtWTrvvMa6f2uu6su0eYw0GBve3uGwigdv+kWllpH1yACP6fqNYvq60rXmxKcq8LtdBxyscdOI3YePlpmfa5qkULXHUuD11Xyzsn9Sa6ypWKQ1srnFnbgMMlgdY4pgpixLWKgxqLBHEww+eBa1gx7eEYmnOSpbkbyVq2WHvgOO9a2PPIsjdH8+ipxacHgrMFleRZs8DZ0h851l7SyuQY+AiMnz3oHh32YnG2KmDPBTAFtMkcRN5+WlU0JtrXtLhBorkMMRMnUh7V1Z4PcEjHHT9fOnX6t9VIDcZqvTVn2R3qOc41mJO7UHNyNKrjktwCp4O1uP1gLTXo3HzWdmpqrm69Vb3soodca1FprRITDNnUUSpuHgiEggInAnyDLPJQQ4wnOU3ywUSwSnBusOXFyrU2R4sFQSbRCs5RYQ7Zizk+XScVx3tM6vsg92ipC50tEGs9mKhrNPu7eHQYKS48Aa0oYMDb8zCQ+LW9Ue2EKSu8TMqjOuYIzAyreTuoWeeMy8hyzTiQrrt0VO05+3dLzSUQxNujTEORFi1Nwpa0acGh1E4DFpuDPPippqkX+mWtr1BZNT7+GDhSs63Q3JM0aCsCZsgmh5wJyCIZjTALJQHtcgDfvCLAjFEoFVFIYtQcFTK8uQlKcA5zKWz9URi9cDLl40d7dytq1AI3vi5gXvB0b4Em6swW0ooatrGYRU2otdm0GjSbaDJCxVmtUW6CREajOqhJW3QvNZL7R+sPt58O4I+FWld3d3+03yKSlTDCalkDrvZTSwBLNw/dJYBhNHMnY1Y4LQRecTkNYmb15ZV1omWtoDwmEQH0HOOlqDWstCSomJyQCPBCScVqDS8HZlkFSH1hifjN0cJCFitwwTkWbMkrlXeeDHbQ7HCiTq1oV9sVzd2KyZc+W4vWljPYJVTBhlST5C0qp0HM1OIWQFgzlV4yi1Ed/LYrTYdtgI0UzuXujlqB55Rfb1fXz7rO+QdgTU3dRaqRrg+BWmru2iuL3Y11CyrUB69qfoEFywTn+tksEh8Q0H7SEJ3JMUO2KppiVg7q8iy5EByNkPR0zVHIQkQM10nHbvYFwFQQGK6ogymSU7UHEe6DVcZ2K6ZS6MyNmi1nbJeCm9zg3NiFRlVM/Xl1ljZU3e+/Amvp1MtdB3DN72ZnpVc1AlJ/OwYt962201peNvuTtcYM9a6bBY8JFCTB/0BwmsLjIxWrAEkuLOEHC4eOgwNV10+Fi01Da0WnXdw0rmasa2mOMvZgMYoTnKe9zrZezF2GHth1WrVGrqitr2qWBJY2uczytb5zuuSzJGqkJpSJAG9j562BTXlUp/ZUm3/XLm7Xl5rvrwJS7ffXj+qv7YMzyC4f79aXH+5fVZi2324eXd72FVUi3iu0fU9Bfau5wBhlcRP5oLEK4icfYXAaI+EVFzimAImBJL7zAcF0XiJ0YINC5gRhAnBNV05MbXCGiva7ZDFN513N3hzlPar5819wTuCaWHsxK5MXFiTgTtR9qLpQb7rk/NUVd/8Et1BAmjeJEB42j9RI+gUMWpTFaWCaBjUBVAQmvclUBkS6d2DVoA3231TqTS8U3PFQO3hRL22WWpvuXVRjk4QnDN+1g6evNu6UXH3QDTWoU1ph7bOi3ux0XpyVsCz1tMaQZTELuSSxcmvVFCLBaoqfPDBTcuLPg6vnnabwzagpC2I0c3ngwblcMgatGdeSMQwWRsWvOSpMgHMSiOCcyIWw9mI2pnpQ/9muetIqvGwC6I47UYdbX2G6ZK1eKa1P7H8TCWS2RqhZRoKSVq9IBnKx5YRPYHJhTGpMEEBdLjmrtrfU7/fRj5cvX1arp9wnodNAYLanzvOap9XLkFWQWzDxIZshrZkWkuJkiTNG7RdyQC7B5Rc12gwpBkaCJf089Cs9DD9LnMP4U1QZwTmbKys4FxJnaBip9SMaW0uTbyJAKmYWcYJlsCwQpuJIMXFCRnWJQzrBoLQaEwBKKFtwTgjICWYE5wkAJZQtOCcE5AQzgvMEgBLKFpwTAtJiZngH9lsf/F3I/KNfWCSElSwC3/j++jf/08Gf/ONGsmbFmiAgCAgCgoAgIAgsOAKlTqcDEPzRL/7lggORcfjf/8ZJxiVKcYKAICAICAKCgCBQbAQ+dXX5L6kIf1HsMOcuusFgcU7hmw34MsOfDe6l98ZmnWd0Mno2sc6yFME5G/QF54xwLjWkE0wJan0PrNwZTAloNAv3XlO1L8YFgRkiIEO6bMAXnAXnbBCQUvKIQMrPq8sjJAvgM+3HoVhNDmZxPqdJUQhBABGQoUY2NUFwFpyzQUBKySkC6Y/q4HCS4bP47u6PHmINh67iA/putnXkIItLwsN4ho/y28DHEevymNa0AuyTvI8DymHugL28XHNhczUfogEde7s16Pq9cw2ROB8JgdwMNezNUaRYZyksOGeD/oxwDtOLxena4KgPt5Ue9WuK01AHAcgrEAE1/GjAGEW1G+ZYxVMNzvWkMvtOe1S32qisrx26B3wd9puVIS7txubp3lMYSRzWl7fG6hZU2U3+SP52407TgRPrWoPuidPcZONCDpGp5Wd/qOXvgHvcBbddOBoHYRAWjcaIjhErXETrO4apBVDRWu2QEcfTCmk8AbEZdYExPLc3RzEMzURFcM4G9hnhHKoXC+i5EByLgDrqo38IDTV0wfduuFMr6onEhwdBz//PBuq5LwXOJnAf71w+7gx8TiidvxhSHtW1V1rVk/t4SkPtdX14/Ovqs1Zv+9YbQKN2/6TaWsHpOvf/xOZp/ZIdwaok9x4dq3NiFaxPdhQ19vLTMu0zNbsDSqB9c+vUcvgs0y0CGXIcBsM+kKSAgQYOJYGgcaFGcBmhC47Ag/zEZ2+OcuK/4JzNhZoFzqF7Mf+eawiOj0C1V2HojY4OY0whC4NAyqO62vNBxx2TccDOl06d/jUcn/HTiK+pObnO/d5IlkuOuONUsBa3T3rc7JjAamPLOXx0SYJCIALaYI5gsY4O+UCQJIVwHPwvvtSs0H0QWl3A5vZHtwjdmX+LlmAZFwFrcxTXmOj5IiA4+0LjkxGyF/PtuTyzfgJHS10UWeuVHffosB01q7JgL37TA2hsYAEDoLEFpga5XtrASU3jDiy/2cppx3k1vM1NZvG+7XCFkrqNm9Ur5VEdCwNmhlvVy1vGZBuJlGsXemZ36ajac0ywSAEm8EwtlhuJlH8wHC4YyZnjszDTddyI0AyBi4PBi7qjjhjGKWe1umDtBUDa3bvirUO4un9vebuLKxYuWw+hZdG1mEEh4yMwsTmKb1o0GQKCMwPDl0ywF7OUUT5+BC0MLIDeurJ3/2KBu7mL2/Wlxx9cVRC1V06rvdNXQ7pVf11zYAA3bJAHg6d7znplbG2YBddx1vJjRzXmg8PL1pY3RtQb83GN1FIZjepghnmL7qVGCuZo/SGC1T053aJJjkgmwgnD4oPHl48W4x+MdsMUkxwmPqTjNMiYAztVlb03NyJ0IALu6oL7amlL+dYlrUNwnKXm++4qZpnwCIRvmsz4zdE0pS6eruA8J9e8vPPEbaLh/+Rwoq7d8NksOCcep+NG7fbl0dkS2G4/u7K9e+k8XoFVhu1ny9XrPed85fHRpbfW8M3Oo9HasHC+DBeVORW+gms2jfmnwnk8lRT8titNh6YoItq63MWRVvn1dnX9rOucfwDW1IVxnMvD0AsYXR88rS67yet5035/fW23pU8WerlF+oaf98RwgmWCcycaFwEPAbgbW28OE71X506tDItzX5yVNkutTWBX9552FuNvhgdIFt/TNUdZeFiMMgTnObyO7kTdiwO4dXgK652O4T4YzEgNFmfbBCzu31ppH/RenfavHfTWtla6ztVXp73t+3A/emXseqmlWcvQJod+eYvKRgoza8xTn6uz/Lb5Uja+DmAEh0eNDXuHTO9vB8wP+exJsdkf07IIwMSJ09py/75U1o9gvqRSX4SN3zAP52Gttj4QTQSfqLMKkKQQ0RGAu7E0zUk7geCW6/AO7FHz7QwXY0R3P4caluYoh1HMv8uC87TXyNJJwaw+DDWuDIca1q5zgoC3og6WNrn+la/1ndOlCEOXaaOauT7chF1+tr/yeA1uuXq0Y1sYZoU3svuzacxTHtWpPdXmLJ26vY23mWCG7Ejd0vZ5lY9368sP8TF17bebR5e3fUW5hYn2TQEPfehQuydVtfipVdR/3MsVVwAAAchJREFUMDg4w0+YdaOxGqcRTcji03KmAImBJL75ZRA6EIFRJYSd16Xhcl2+nhcm68Z2rgVak8wQCNiBoxCKIhIJAcE5Elx24VH7wHpJK5PrBwmMVtR50yXnr644av/EAr3gJuzp4+W122rpS+V6D2hn+7VCQN0MHD1njWE+Do4aNy8/c/9tn3+wjIPjcQlKzawxT/cOrILGcY5Gt5mc+qF6+kvt4EV9eJsJ7qIGPTWndvD01cadknubCnRDDerggSmT7E8UoCtTeALHbdoADqIGDn1yEExJPvLjkkIbCPSuV9U08Jn+K1BbKNy6fXFwuFIa/l6A+dxtcMe0DJvCCIuAX3MUVl/kwiEgOIfDaYKUtZOyMdUy/7Nd97FqQX2fO1E3cLe+wnTJWr1SWndXMQX1vxNczGN2peccXbnuPugFFjQ7zeXtR7gdGG6YPnVgsFFSq1+c6km3A8i42ynGwry4v7de2arDMqbq3kndwWVdYxJewtqYe5lpfpc++r//B+w//B//DEuRc2DTRFvZnu2p83xMhuM2ijfk4IxbIF0iyGZIa6SYODFbnBMPZ24NCs7ZXBrBWXDOBoFsSslJfR4bMWeDzPSl/H/vUKRFpMleYQAAAABJRU5ErkJggg==" alt="">

前台代码为:

{id:'btn_export''导出查询结果''icon-print''温馨提示','确认导出?'=serializeForm($('#mysearch''#downform').form('submit'"<%=basePath%>dayrec/export""post"==='温馨提示','导出失败'

此处涉及到了一个序列化form表单的方法。为:

方法:序列化表单 = (obj[['name'['name']] = obj[['name']] + ',' + ['value'['name']] = ['value'

后台代码

@RequestMapping(value = "/export",method =@modelattribute DayRecruit rec,String date_start,String date_end,HttpSession session,HttpServletResponse response) { Account account= dataset == String[]{"日期","所属公司","招聘企业","面试人数","入职人数","入职率(%)","备注"</span><span style="color: #0000ff"&gt;if</span>(dataset == <span style="color: #0000ff"&gt;null</span> || dataset.size() < 1<span style="color: #000000"&gt;){ </span><span style="color: #0000ff"&gt;return</span> "没有查找到相应的数据,请刷新数据后重试"<span style="color: #000000"&gt;; } response.setContentType(</span>"application/vnd.ms-excel");<span style="color: #008000"&gt;//</span><span style="color: #008000"&gt;;charset=utf-8</span> response.setHeader("Content-Disposition","attachment;filename=dayRecruit.xls"<span style="color: #000000"&gt;); response.setHeader(</span>"Pragma","No-cache"<span style="color: #000000"&gt;); response.setHeader ( </span>"Cache-Control","no-store"<span style="color: #000000"&gt;); </span><span style="color: #0000ff"&gt;try</span><span style="color: #000000"&gt; { OutputStream sos </span>=<span style="color: #000000"&gt; response.getOutputStream(); ExportExcelsUtil.exportExcel(headers,dataset,sos);</span><span style="color: #008000"&gt;//</span><span style="color: #008000"&gt;如果不需要额外数据exportExcel(headers,sos) </span><span style="color: #008000"&gt;//</span><span style="color: #008000"&gt; ExportExcelsUtil.exportExcel(2,1,2,"<a href="/tag/yonghu/" target="_blank" class="keywords">用户</a>信息",headers,sos)</span>

<span style="color: #000000"> response.flushBuffer();
} <span style="color: #0000ff">catch<span style="color: #000000"> (IOException e) {
e.printStackTrace();
}
<span style="color: #0000ff">return "成功导出"+dataset.size()+"条用户数据。"<span style="color: #000000">;
}

其实和导出选中行操作过程一样的,区别是。导出所选行,前台传入是选中行的id.导出查询结果,前台传入的是查询条件,可以直接复用初始化数据时的方法

具体参考

 

http://www.cnblogs.com/wenjieyatou/p/6120796.html

 

猜你在找的Java相关文章