如何构建高性能MySQL索引

前端之家收集整理的这篇文章主要介绍了如何构建高性能MySQL索引前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。

<p id="_1">本文的重点在于如何构建一个高性能MysqL索引,从中你可以学到如何分析一个索引是不是好索引,以及如何构建一个好的索引。


<h1 id="_2">
<a class="headeranchor-link" name="user-content-_2" href="https://www.cnblogs.com/yunxitalk/p/10092177.html#_2"&gt;索引误区
<h2 id="_3">
<a class="headeranchor-link" name="user-content-_3" href="https://www.cnblogs.com/yunxitalk/p/10092177.html#_3"&gt;多列索引

一个索引的常见误区是为每一列创建一个索引,如下面创建的索引:

Highlighter">

t表里有三列,并且为每列创建了一个索引。创建索引的人为了能够快速访问表中的任何一列,因此为每一列添加了一个单独的索引。在多个列上创建索引通常并不能很好的提高MySQL查询性能,虽然说MysqL 5.0之后引入了索引合并策略,可以将多个单列索引合并成一个索引,但这并不总是有效的。同时创建多个索引的时候还会增加数据插入的成本,在插入数据的时候需要同时维护多个索引的写入操作。

看下面这条sql语句:

即使我们在student表的id列上建立索引,上面的这条SQL语句也无法使用索引。SQL语句中索引字段不能是表达式的一部分,也不能是函数的参数。

创建高性能索引

在选择索引的顺序的时候有一个原则:将索引选择性最高的列放在左侧,同时索引的顺序要与查询索引的顺序一致,并且要兼顾考虑排序和分组的需要。在一个多列B树多列中索引的顺序意味着索引首先按照最左侧的列进行排序,其次是第二列。所以无论是where语句还是order by语句都需要尽量满足这个顺序,这样才能更好的使用索引。

列的选择性高的含义是通过这一列能够更多的过滤掉无用的数据,举个极端的例子,如果把自增id建成索引那么它的选择性是最高的,因为会把无用的数据都过滤掉,只会剩下一条有效数据。我们可以通过下面的方式来简单衡量某一个列的选择性:

当上面的数据越大的时候意味着columnA的选择性越高。这种方式提供了一个衡量平均选择性的办法,但是也不一定是有效的,需要具体情况具体分析。

当遇到特别长的列,但又必须要建立索引的时候可以考虑建立前缀索引。前缀索引的含义是把某一列的前N个字符作为索引,创建前缀索引的方式如下:

Highlighter">

上面这个语句就是把columnA的前5个字符创建为前缀索引。前缀索引是一种使索引更小、更快的有效办法。但是前缀所有有一个缺点:MysqL无法使用前缀索引来做order by和group by,也无法使用前缀索引做覆盖扫描。

非聚簇索引通常被称为二级索引,与聚簇索引的不同在于,非聚簇索引的叶子节点存放的是数据的行指针或者是一个主键值。这样在查找数据的时候首先定位到叶子节点上的主键值(或者行指针),然后通过主键值再到聚簇索引中查找到对应的数据。从中我们可以看到对于非聚簇索引的查询需要走两次索引。下图是一个非聚簇索引:

这个索引是InnoDB中的耳机索引,叶子节点中存储的是索引和主键。对于MyISAM叶子节点存储的是索引和行指针。

如果一个索引包含或者说覆盖所有需要查询的字段的值,那么就称为覆盖索引。覆盖索引可以极大的提高查询的效率,如果我们的查询中只查询索引,而不用去回表那应该最好不过了。

通常我们使用explain关键字来查看一个查询语句的执行计划,通过执行计划我们可以了解到查询的细节。如果是覆盖索引,我们会看到执行计划的Extra列里有”Using Index”的信息。在查询语句中一般我们希望是where条件中的语句尽量能被覆盖,并且顺序要跟索引的保持一致。还有一个需要注意的点是MysqL不能在索引中使用like操作,这样会导致后面的索引失效。

总结

本文主要讲了几种索引的原理以及如何构建一个高性能的索引。索引的优先是一个渐进的过程,随着数据量和查询语句的不同而发生变化,重要的是了解索引的原理,这样做出正确的优化。下一篇文章中将会介绍explain关键字,教你如何来看执行计划,以及如何判断一个查询语句是否需要优化的。

猜你在找的Java相关文章