我正在寻找处理语言中的Canny Edge Detection的复制粘贴实现.我对图像处理没有任何想法,关于Processing的知识很少,虽然我很了解
java.
有些加工专家可以告诉我是否有办法在处理过程中实施这个http://www.tomgibara.com/computer-vision/CannyEdgeDetector.java?
解决方法
我想如果你用Java处理处理,那么一些问题可以很容易地解决.这意味着您可以使用Java类.
对于演示,我使用的是您共享的implementation.
>>原始图片
>>更改了图片
>>代码
import java.awt.image.BufferedImage; import java.util.Arrays; PImage orig; PImage changed; void setup() { orig = loadImage("c:/temp/image.png"); size(250,166); CannyEdgeDetector detector = new CannyEdgeDetector(); detector.setLowThreshold(0.5f); detector.setHighThreshold(1f); detector.setSourceImage((java.awt.image.BufferedImage)orig.getImage()); detector.process(); BufferedImage edges = detector.getEdgesImage(); changed = new PImage(edges); noLoop(); } void draw() { //image(orig,width,height); image(changed,height); } // The code below is taken from "http://www.tomgibara.com/computer-vision/CannyEdgeDetector.java" // I have stripped the comments for conciseness public class CannyEdgeDetector { // statics private final static float GAUSSIAN_CUT_OFF = 0.005f; private final static float MAGNITUDE_SCALE = 100F; private final static float MAGNITUDE_LIMIT = 1000F; private final static int MAGNITUDE_MAX = (int) (MAGNITUDE_SCALE * MAGNITUDE_LIMIT); // fields private int height; private int width; private int picsize; private int[] data; private int[] magnitude; private BufferedImage sourceImage; private BufferedImage edgesImage; private float gaussianKernelRadius; private float lowThreshold; private float highThreshold; private int gaussianKernelWidth; private boolean contrastNormalized; private float[] xConv; private float[] yConv; private float[] xGradient; private float[] yGradient; // constructors /** * Constructs a new detector with default parameters. */ public CannyEdgeDetector() { lowThreshold = 2.5f; highThreshold = 7.5f; gaussianKernelRadius = 2f; gaussianKernelWidth = 16; contrastNormalized = false; } public BufferedImage getSourceImage() { return sourceImage; } public void setSourceImage(BufferedImage image) { sourceImage = image; } public BufferedImage getEdgesImage() { return edgesImage; } public void setEdgesImage(BufferedImage edgesImage) { this.edgesImage = edgesImage; } public float getLowThreshold() { return lowThreshold; } public void setLowThreshold(float threshold) { if (threshold < 0) throw new IllegalArgumentException(); lowThreshold = threshold; } public float getHighThreshold() { return highThreshold; } public void setHighThreshold(float threshold) { if (threshold < 0) throw new IllegalArgumentException(); highThreshold = threshold; } public int getGaussianKernelWidth() { return gaussianKernelWidth; } public void setGaussianKernelWidth(int gaussianKernelWidth) { if (gaussianKernelWidth < 2) throw new IllegalArgumentException(); this.gaussianKernelWidth = gaussianKernelWidth; } public float getGaussianKernelRadius() { return gaussianKernelRadius; } public void setGaussianKernelRadius(float gaussianKernelRadius) { if (gaussianKernelRadius < 0.1f) throw new IllegalArgumentException(); this.gaussianKernelRadius = gaussianKernelRadius; } public boolean isContrastNormalized() { return contrastNormalized; } public void setContrastNormalized(boolean contrastNormalized) { this.contrastNormalized = contrastNormalized; } // methods public void process() { width = sourceImage.getWidth(); height = sourceImage.getHeight(); picsize = width * height; initArrays(); readLuminance(); if (contrastNormalized) normalizeContrast(); computeGradients(gaussianKernelRadius,gaussianKernelWidth); int low = Math.round(lowThreshold * MAGNITUDE_SCALE); int high = Math.round( highThreshold * MAGNITUDE_SCALE); performHysteresis(low,high); thresholdEdges(); writeEdges(data); } // private utility methods private void initArrays() { if (data == null || picsize != data.length) { data = new int[picsize]; magnitude = new int[picsize]; xConv = new float[picsize]; yConv = new float[picsize]; xGradient = new float[picsize]; yGradient = new float[picsize]; } } private void computeGradients(float kernelRadius,int kernelWidth) { //generate the gaussian convolution masks float kernel[] = new float[kernelWidth]; float diffKernel[] = new float[kernelWidth]; int kwidth; for (kwidth = 0; kwidth < kernelWidth; kwidth++) { float g1 = gaussian(kwidth,kernelRadius); if (g1 <= GAUSSIAN_CUT_OFF && kwidth >= 2) break; float g2 = gaussian(kwidth - 0.5f,kernelRadius); float g3 = gaussian(kwidth + 0.5f,kernelRadius); kernel[kwidth] = (g1 + g2 + g3) / 3f / (2f * (float) Math.PI * kernelRadius * kernelRadius); diffKernel[kwidth] = g3 - g2; } int initX = kwidth - 1; int maxX = width - (kwidth - 1); int initY = width * (kwidth - 1); int maxY = width * (height - (kwidth - 1)); //perform convolution in x and y directions for (int x = initX; x < maxX; x++) { for (int y = initY; y < maxY; y += width) { int index = x + y; float sumX = data[index] * kernel[0]; float sumY = sumX; int xOffset = 1; int yOffset = width; for(; xOffset < kwidth ;) { sumY += kernel[xOffset] * (data[index - yOffset] + data[index + yOffset]); sumX += kernel[xOffset] * (data[index - xOffset] + data[index + xOffset]); yOffset += width; xOffset++; } yConv[index] = sumY; xConv[index] = sumX; } } for (int x = initX; x < maxX; x++) { for (int y = initY; y < maxY; y += width) { float sum = 0f; int index = x + y; for (int i = 1; i < kwidth; i++) sum += diffKernel[i] * (yConv[index - i] - yConv[index + i]); xGradient[index] = sum; } } for (int x = kwidth; x < width - kwidth; x++) { for (int y = initY; y < maxY; y += width) { float sum = 0.0f; int index = x + y; int yOffset = width; for (int i = 1; i < kwidth; i++) { sum += diffKernel[i] * (xConv[index - yOffset] - xConv[index + yOffset]); yOffset += width; } yGradient[index] = sum; } } initX = kwidth; maxX = width - kwidth; initY = width * kwidth; maxY = width * (height - kwidth); for (int x = initX; x < maxX; x++) { for (int y = initY; y < maxY; y += width) { int index = x + y; int indexN = index - width; int indexS = index + width; int indexW = index - 1; int indexE = index + 1; int indexNW = indexN - 1; int indexNE = indexN + 1; int indexSW = indexS - 1; int indexSE = indexS + 1; float xGrad = xGradient[index]; float yGrad = yGradient[index]; float gradMag = hypot(xGrad,yGrad); //perform non-maximal supression float nMag = hypot(xGradient[indexN],yGradient[indexN]); float sMag = hypot(xGradient[indexS],yGradient[indexS]); float wMag = hypot(xGradient[indexW],yGradient[indexW]); float eMag = hypot(xGradient[indexE],yGradient[indexE]); float neMag = hypot(xGradient[indexNE],yGradient[indexNE]); float seMag = hypot(xGradient[indexSE],yGradient[indexSE]); float swMag = hypot(xGradient[indexSW],yGradient[indexSW]); float nwMag = hypot(xGradient[indexNW],yGradient[indexNW]); float tmp; if (xGrad * yGrad <= (float) 0 /*(1)*/ ? Math.abs(xGrad) >= Math.abs(yGrad) /*(2)*/ ? (tmp = Math.abs(xGrad * gradMag)) >= Math.abs(yGrad * neMag - (xGrad + yGrad) * eMag) /*(3)*/ && tmp > Math.abs(yGrad * swMag - (xGrad + yGrad) * wMag) /*(4)*/ : (tmp = Math.abs(yGrad * gradMag)) >= Math.abs(xGrad * neMag - (yGrad + xGrad) * nMag) /*(3)*/ && tmp > Math.abs(xGrad * swMag - (yGrad + xGrad) * sMag) /*(4)*/ : Math.abs(xGrad) >= Math.abs(yGrad) /*(2)*/ ? (tmp = Math.abs(xGrad * gradMag)) >= Math.abs(yGrad * seMag + (xGrad - yGrad) * eMag) /*(3)*/ && tmp > Math.abs(yGrad * nwMag + (xGrad - yGrad) * wMag) /*(4)*/ : (tmp = Math.abs(yGrad * gradMag)) >= Math.abs(xGrad * seMag + (yGrad - xGrad) * sMag) /*(3)*/ && tmp > Math.abs(xGrad * nwMag + (yGrad - xGrad) * nMag) /*(4)*/ ) { magnitude[index] = gradMag >= MAGNITUDE_LIMIT ? MAGNITUDE_MAX : (int) (MAGNITUDE_SCALE * gradMag); //NOTE: The orientation of the edge is not employed by this //implementation. It is a simple matter to compute it at //this point as: Math.atan2(yGrad,xGrad); } else { magnitude[index] = 0; } } } } private float hypot(float x,float y) { return (float) Math.hypot(x,y); } private float gaussian(float x,float sigma) { return (float) Math.exp(-(x * x) / (2f * sigma * sigma)); } private void performHysteresis(int low,int high) { Arrays.fill(data,0); int offset = 0; for (int y = 0; y < height; y++) { for (int x = 0; x < width; x++) { if (data[offset] == 0 && magnitude[offset] >= high) { follow(x,y,offset,low); } offset++; } } } private void follow(int x1,int y1,int i1,int threshold) { int x0 = x1 == 0 ? x1 : x1 - 1; int x2 = x1 == width - 1 ? x1 : x1 + 1; int y0 = y1 == 0 ? y1 : y1 - 1; int y2 = y1 == height -1 ? y1 : y1 + 1; data[i1] = magnitude[i1]; for (int x = x0; x <= x2; x++) { for (int y = y0; y <= y2; y++) { int i2 = x + y * width; if ((y != y1 || x != x1) && data[i2] == 0 && magnitude[i2] >= threshold) { follow(x,i2,threshold); return; } } } } private void thresholdEdges() { for (int i = 0; i < picsize; i++) { data[i] = data[i] > 0 ? -1 : 0xff000000; } } private int luminance(float r,float g,float b) { return Math.round(0.299f * r + 0.587f * g + 0.114f * b); } private void readLuminance() { int type = sourceImage.getType(); if (type == BufferedImage.TYPE_INT_RGB || type == BufferedImage.TYPE_INT_ARGB) { int[] pixels = (int[]) sourceImage.getData().getDataElements(0,height,null); for (int i = 0; i < picsize; i++) { int p = pixels[i]; int r = (p & 0xff0000) >> 16; int g = (p & 0xff00) >> 8; int b = p & 0xff; data[i] = luminance(r,g,b); } } else if (type == BufferedImage.TYPE_BYTE_GRAY) { byte[] pixels = (byte[]) sourceImage.getData().getDataElements(0,null); for (int i = 0; i < picsize; i++) { data[i] = (pixels[i] & 0xff); } } else if (type == BufferedImage.TYPE_USHORT_GRAY) { short[] pixels = (short[]) sourceImage.getData().getDataElements(0,null); for (int i = 0; i < picsize; i++) { data[i] = (pixels[i] & 0xffff) / 256; } } else if (type == BufferedImage.TYPE_3BYTE_BGR) { byte[] pixels = (byte[]) sourceImage.getData().getDataElements(0,null); int offset = 0; for (int i = 0; i < picsize; i++) { int b = pixels[offset++] & 0xff; int g = pixels[offset++] & 0xff; int r = pixels[offset++] & 0xff; data[i] = luminance(r,b); } } else { throw new IllegalArgumentException("Unsupported image type: " + type); } } private void normalizeContrast() { int[] histogram = new int[256]; for (int i = 0; i < data.length; i++) { histogram[data[i]]++; } int[] remap = new int[256]; int sum = 0; int j = 0; for (int i = 0; i < histogram.length; i++) { sum += histogram[i]; int target = sum*255/picsize; for (int k = j+1; k <=target; k++) { remap[k] = i; } j = target; } for (int i = 0; i < data.length; i++) { data[i] = remap[data[i]]; } } private void writeEdges(int pixels[]) { if (edgesImage == null) { edgesImage = new BufferedImage(width,BufferedImage.TYPE_INT_ARGB); } edgesImage.getWritableTile(0,0).setDataElements(0,pixels); } }