由于java.io.NotSerializableException:org.apache.spark.SparkContext,Spark作业失败

前端之家收集整理的这篇文章主要介绍了由于java.io.NotSerializableException:org.apache.spark.SparkContext,Spark作业失败前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。
当我尝试在RDD [(Int,ArrayBuffer [(Int,Double)])]输入上应用方法(ComputeDwt)时,我面临异常.
我甚至使用扩展序列化选项来序列化spark中的对象.这是代码片段.
input:series:RDD[(Int,ArrayBuffer[(Int,Double)])] 
DWTsample extends Serialization is a class having computeDwt function.
sc: sparkContext

val  kk:RDD[(Int,List[Double])]=series.map(t=>(t._1,new DWTsample().computeDwt(sc,t._2)))

Error:
org.apache.spark.SparkException: Job Failed: java.io.NotSerializableException: org.apache.spark.SparkContext
org.apache.spark.SparkException: Job Failed: java.io.NotSerializableException: org.apache.spark.SparkContext
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:760)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:758)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:60)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:758)
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$submitMissingTasks(DAGScheduler.scala:556)
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$submitStage(DAGScheduler.scala:503)
at org.apache.spark.scheduler.DAGScheduler.processEvent(DAGScheduler.scala:361)
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$run(DAGScheduler.scala:441)
at org.apache.spark.scheduler.DAGScheduler$$anon$1.run(DAGScheduler.scala:149)

任何人都可以建议我可能是什么问题以及应该采取什么措施来克服这个问题?

解决方法

这条线
series.map(t=>(t._1,t._2)))

引用SparkContext(sc)但SparkContext不可序列化. SparkContext旨在公开在驱动程序上运行的操作;它不能被在worker上运行的代码引用/使用.

您必须重新构造代码,以便在map函数闭包中不引用sc.

猜你在找的Java相关文章