当我尝试在RDD [(Int,ArrayBuffer [(Int,Double)])]输入上应用方法(ComputeDwt)时,我面临异常.
我甚至使用扩展序列化选项来序列化spark中的对象.这是代码片段.
我甚至使用扩展序列化选项来序列化spark中的对象.这是代码片段.
input:series:RDD[(Int,ArrayBuffer[(Int,Double)])] DWTsample extends Serialization is a class having computeDwt function. sc: sparkContext val kk:RDD[(Int,List[Double])]=series.map(t=>(t._1,new DWTsample().computeDwt(sc,t._2))) Error: org.apache.spark.SparkException: Job Failed: java.io.NotSerializableException: org.apache.spark.SparkContext org.apache.spark.SparkException: Job Failed: java.io.NotSerializableException: org.apache.spark.SparkContext at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:760) at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:758) at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:60) at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:758) at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$submitMissingTasks(DAGScheduler.scala:556) at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$submitStage(DAGScheduler.scala:503) at org.apache.spark.scheduler.DAGScheduler.processEvent(DAGScheduler.scala:361) at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$run(DAGScheduler.scala:441) at org.apache.spark.scheduler.DAGScheduler$$anon$1.run(DAGScheduler.scala:149)
任何人都可以建议我可能是什么问题以及应该采取什么措施来克服这个问题?