>使用Signature.getInstance计算签名(“SHA256withRSA”)
>使用MessageDigest.getInstance(“SHA-256”)计算SHA256,并使用Signature.getInstance(“RSA”)计算摘要;得到签名?
如果它们不同,是否有一种修改方法2的方法,以便两种方法给出相同的输出?
我尝试了以下代码:
package mysha.mysha; import java.security.MessageDigest; import java.security.PrivateKey; import java.security.Security; import java.security.Signature; import org.bouncycastle.jce.provider.BouncyCastleProvider; public class MySHA256 { public static void main(String[] args) throws Exception { //compute SHA256 first Security.addProvider(new BouncyCastleProvider()); String s = "1234"; MessageDigest messageDigest = MessageDigest.getInstance("SHA-256"); messageDigest.update(s.getBytes()); byte[] outputDigest = messageDigest.digest(); //sign SHA256 with RSA PrivateKey privateKey = Share.loadPk8("D:/key.pk8"); Signature rsaSignature = Signature.getInstance("RSA"); rsaSignature.initSign(privateKey); rsaSignature.update(outputDigest); byte[] signed = rsaSignature.sign(); System.out.println(bytesToHex(signed)); //compute SHA256withRSA as a single step Signature rsaSha256Signature = Signature.getInstance("SHA256withRSA"); rsaSha256Signature.initSign(privateKey); rsaSha256Signature.update(s.getBytes()); byte[] signed2 = rsaSha256Signature.sign(); System.out.println(bytesToHex(signed2)); } public static String bytesToHex(byte[] bytes) { final char[] hexArray = "0123456789ABCDEF".tocharArray(); char[] hexChars = new char[bytes.length * 2]; for ( int j = 0; j < bytes.length; j++ ) { int v = bytes[j] & 0xFF; hexChars[j * 2] = hexArray[v >>> 4]; hexChars[j * 2 + 1] = hexArray[v & 0x0F]; } return new String(hexChars); } }
不过,输出不一样.
以下是我的测试键的示例输出:
方法1:61427B2A2CF1902A4B15F80156AEB09D8096BA1271F89F1919C78B18D0BABA08AA043A0037934B5AE3FC0EB7702898AC5AE96517AFD93433DF540353BCCE72A470CFA4B765D5835E7EA77743F3C4A0ABB11414B0141EF7ECCD2D5285A69728D0D0709C2537D6A772418A928B0E168F81C99B538FD25BDA7496AE8E185AC46F39
方法2:BA9039B75CA8A40DC9A7AED51E174E2B3365B2D6A1CF94DF70A00D898074A51FDD9973672DDE95CBAC39EBE4F3BA529C538ED0FF9F0A3F9A8CE203F1DFFA907DC508643906AA86DA54DFF8A90B00F5F116D13A53731384C1C5C9C4E75A3E41DAF88F74D2F1BCCF818764A4AB144A081B641C1C488AC8B194EB14BC9D1928E4EA
更新1:
根据mkl的回答,我修改了我的代码,但仍然无法正确的.我还想念什么吗?
package mysha.mysha; import java.io.ByteArrayOutputStream; import java.io.IOException; import java.security.MessageDigest; import java.security.PrivateKey; import java.security.Security; import java.security.Signature; import org.bouncycastle.asn1.DEROutputStream; import org.bouncycastle.asn1.nist.NISTObjectIdentifiers; import org.bouncycastle.asn1.x509.AlgorithmIdentifier; import org.bouncycastle.asn1.x509.DigestInfo; import org.bouncycastle.jce.provider.BouncyCastleProvider; public class MySHA256 { public static void main(String[] args) throws Exception { //compute SHA256 first Security.addProvider(new BouncyCastleProvider()); String s = "1234"; MessageDigest messageDigest = MessageDigest.getInstance("SHA-256"); messageDigest.update(s.getBytes()); byte[] outputDigest = messageDigest.digest(); AlgorithmIdentifier sha256Aid = new AlgorithmIdentifier(NISTObjectIdentifiers.id_sha256,null); DigestInfo di = new DigestInfo(sha256Aid,outputDigest); //sign SHA256 with RSA PrivateKey privateKey = Share.loadPk8("D:/key.pk8"); Signature rsaSignature = Signature.getInstance("RSA"); rsaSignature.initSign(privateKey); rsaSignature.update(di.toASN1Primitive().getEncoded()); byte[] signed = rsaSignature.sign(); System.out.println("method 1: "+bytesToHex(signed)); //compute SHA256withRSA as a single step Signature rsaSha256Signature = Signature.getInstance("SHA256withRSA"); rsaSha256Signature.initSign(privateKey); rsaSha256Signature.update(s.getBytes()); byte[] signed2 = rsaSha256Signature.sign(); System.out.println("method 2: "+bytesToHex(signed2)); } public static String bytesToHex(byte[] bytes) { final char[] hexArray = "0123456789ABCDEF".tocharArray(); char[] hexChars = new char[bytes.length * 2]; for ( int j = 0; j < bytes.length; j++ ) { int v = bytes[j] & 0xFF; hexChars[j * 2] = hexArray[v >>> 4]; hexChars[j * 2 + 1] = hexArray[v & 0x0F]; } return new String(hexChars); } }
方法1:
675D868546777C5A9B5E74988E0CD41A46A929C1D0890B32B1FBE34F12D68F1FDB56E623294DB903F6AC60A2ADA61976B27C66056A16F5790A78168803AD2C685F9B4CF983C939305A9819CBA9D95441CD7214D40D06A98B4DDF9692A7D300DD51E808A6722A0D7C288DBD476DF4DEEBB3DAF41CFC0978F24424960F86F0284E
方法2:
BA9039B75CA8A40DC9A7AED51E174E2B3365B2D6A1CF94DF70A00D898074A51FDD9973672DDE95CBAC39EBE4F3BA529C538ED0FF9F0A3F9A8CE203F1DFFA907DC508643906AA86DA54DFF8A90B00F5F116D13A53731384C1C5C9C4E75A3E41DAF88F74D2F1BCCF818764A4AB144A081B641C1C488AC8B194EB14BC9D1928E4EA
解决方法
与“SHA256withRSA”签名并计算SHA256散列并使用“RSA”(=“NONEwithRSA”)进行签名的区别首先在前一种情况下,计算出的SHA-256哈希值首先封装在DigestInfo结构中
DigestInfo ::= SEQUENCE { digestAlgorithm DigestAlgorithm,digest OCTET STRING }
在填充然后加密,而在后一种情况下,裸机SHA256哈希值被填充和加密.
If they are different,is there a way to modify the method 2 so that both methods give the same output?
首先,您必须在使用“NONEwithRSA”签名之前将哈希值封装在DigestInfo结构中.
RFC 3447 Section 9.2在这里说明注释1
1. For the six hash functions mentioned in Appendix B.1,the DER encoding T of the DigestInfo value is equal to the following: ... SHA-256: (0x)30 31 30 0d 06 09 60 86 48 01 65 03 04 02 01 05 00 04 20 || H.
使其工作
为了回应上述部分,OP更新了他的问题与更新的代码.不幸的是,它还没有为他工作.从而,
OP的代码
我执行了OP的代码(SignInSteps.java).由于他没有提供私钥,所以我使用了我自己的测试键(demo-rsa2048.p12).结果:
GreenhandOriginal: 1B9557B6A076226FA4C26A9370A0E9E91B627F14204D427B03294EC4BFC346FDEEFB3A483B1E5A0593F26E9DE87F9202E1064F4D75B24B8FA355B23A560AF263361BB94B2339C3A01952C447CAC862AA9DCAB64B09ABAA0AD50232CDB299D1E4B5F7138F448A87ED32BFF4B5B66F35FFA08F13FD98DFCEC7114710282E463245311DA7A56CBEA958D88137A8B507D8601464535978EFE36EE37EF721260DB7112484F244409F0BD64C823ACFB13D06ABA84A9A0C5AB207E19231D6A71CC80F07FDA2A9654F0F609C2C3396D6DFFBBB10EF4C3D4B5ADFC72EACC044E81F252B699F095CFEF8630B284B1F6BD7201367BD5FDF2BB4C20BD07B9CC20B214D86C729 4B9ECA6DD47C1B230D972E7DA026165F1CE743EC96825E4C13DFE2C6437FE673A13CA622047EE7D2F7C5280198D81550A1CBD17F8E8A3C4C2D53A746FA6464AA5194FC2782527B014F017008D89BB2C80B7FA367C74FE01369986B56BCE7DC573A11ED884511F0CB12160CA5E42D488451AA8961BF5A9F71E6A5E89F19BC8EFAC26DDE989A0369667EE74372F6E558887FE2561EA926B441AB8F0FD3DEDD608A671011313372084B059CAD7E4807AC852C0873C57F216349422771C089678BAC3021D054C4427EADE70219E251617B83E68640DD7D03C3F99E47F79EB71C124F59EDEA724496A4552F2E9E1F90DDE550745E85483D823F146982C6D2008FE9AA GreenhandUpdated: method 1: 4B9ECA6DD47C1B230D972E7DA026165F1CE743EC96825E4C13DFE2C6437FE673A13CA622047EE7D2F7C5280198D81550A1CBD17F8E8A3C4C2D53A746FA6464AA5194FC2782527B014F017008D89BB2C80B7FA367C74FE01369986B56BCE7DC573A11ED884511F0CB12160CA5E42D488451AA8961BF5A9F71E6A5E89F19BC8EFAC26DDE989A0369667EE74372F6E558887FE2561EA926B441AB8F0FD3DEDD608A671011313372084B059CAD7E4807AC852C0873C57F216349422771C089678BAC3021D054C4427EADE70219E251617B83E68640DD7D03C3F99E47F79EB71C124F59EDEA724496A4552F2E9E1F90DDE550745E85483D823F146982C6D2008FE9AA method 2: 4B9ECA6DD47C1B230D972E7DA026165F1CE743EC96825E4C13DFE2C6437FE673A13CA622047EE7D2F7C5280198D81550A1CBD17F8E8A3C4C2D53A746FA6464AA5194FC2782527B014F017008D89BB2C80B7FA367C74FE01369986B56BCE7DC573A11ED884511F0CB12160CA5E42D488451AA8961BF5A9F71E6A5E89F19BC8EFAC26DDE989A0369667EE74372F6E558887FE2561EA926B441AB8F0FD3DEDD608A671011313372084B059CAD7E4807AC852C0873C57F216349422771C089678BAC3021D054C4427EADE70219E251617B83E68640DD7D03C3F99E47F79EB71C124F59EDEA724496A4552F2E9E1F90DDE550745E85483D823F146982C6D2008FE9AA
因此,与OP的观察结果不同,在更新的代码的情况下,签名相等.
不承担复制和粘贴错误,仍可能存在其他差异.
环境
我使用Java 8(1.8.0_20)进行了测试,其中添加了无限的管辖区域文件,BouncyCastle 1.52,1.49和1.46(由于BC API更改而进行了小的测试代码修改).
在评论中提到的OP:
The Java is JRE 8 update 66. The BouncyCastle is bcprov-jdk15on-153.jar.
所以我更新了Java,依然没有区别.
然后我更新了BouncyCastle到1.53.事实上,突然之间的结果有所不同:
GreenhandOriginal: 1B9557B6A076226FA4C26A9370A0E9E91B627F14204D427B03294EC4BFC346FDEEFB3A483B1E5A0593F26E9DE87F9202E1064F4D75B24B8FA355B23A560AF263361BB94B2339C3A01952C447CAC862AA9DCAB64B09ABAA0AD50232CDB299D1E4B5F7138F448A87ED32BFF4B5B66F35FFA08F13FD98DFCEC7114710282E463245311DA7A56CBEA958D88137A8B507D8601464535978EFE36EE37EF721260DB7112484F244409F0BD64C823ACFB13D06ABA84A9A0C5AB207E19231D6A71CC80F07FDA2A9654F0F609C2C3396D6DFFBBB10EF4C3D4B5ADFC72EACC044E81F252B699F095CFEF8630B284B1F6BD7201367BD5FDF2BB4C20BD07B9CC20B214D86C729 4B9ECA6DD47C1B230D972E7DA026165F1CE743EC96825E4C13DFE2C6437FE673A13CA622047EE7D2F7C5280198D81550A1CBD17F8E8A3C4C2D53A746FA6464AA5194FC2782527B014F017008D89BB2C80B7FA367C74FE01369986B56BCE7DC573A11ED884511F0CB12160CA5E42D488451AA8961BF5A9F71E6A5E89F19BC8EFAC26DDE989A0369667EE74372F6E558887FE2561EA926B441AB8F0FD3DEDD608A671011313372084B059CAD7E4807AC852C0873C57F216349422771C089678BAC3021D054C4427EADE70219E251617B83E68640DD7D03C3F99E47F79EB71C124F59EDEA724496A4552F2E9E1F90DDE550745E85483D823F146982C6D2008FE9AA GreenhandUpdated: method 1: 6BAAAC1060B6D0D56AD7D45A1BEECE82391088FF47A8D8179EFBBEB0925C4AC6C9DFC56F672E99F4A6E3C106A866B70513C25AE11B267286C584A136FBC20C4D1E7B10697352DF020BA5D67029A6EF890B2674F02C496CB1F1EBB0D4DBB580EB045DBB0FA0D7D73B418FF63F345658C6C73DA742FE260C9639C94967A928F74F61DACA03310B9986C32D83CAB8C7FC13E80612CCFC0B7E3E35BEA04EAEBDAA55FB8837B4661DC71499B4A0B1D36E1D23D9927CDB55C237D5AB2E5C088F29C6FAFAD9FE64DD4851CEC113560864E9923D485D0C6E092C8EBE82D29C312E5835B38EE9BD6B8B4BCC753EF4EE4D0977B2E781B391839E3EC31C36E5B1AA0CE90227 method 2: 4B9ECA6DD47C1B230D972E7DA026165F1CE743EC96825E4C13DFE2C6437FE673A13CA622047EE7D2F7C5280198D81550A1CBD17F8E8A3C4C2D53A746FA6464AA5194FC2782527B014F017008D89BB2C80B7FA367C74FE01369986B56BCE7DC573A11ED884511F0CB12160CA5E42D488451AA8961BF5A9F71E6A5E89F19BC8EFAC26DDE989A0369667EE74372F6E558887FE2561EA926B441AB8F0FD3DEDD608A671011313372084B059CAD7E4807AC852C0873C57F216349422771C089678BAC3021D054C4427EADE70219E251617B83E68640DD7D03C3F99E47F79EB71C124F59EDEA724496A4552F2E9E1F90DDE550745E85483D823F146982C6D2008FE9AA
有趣的是,只有更新代码中方法1的值不同.因此,我在这种情况下看了中介的对象
[BC 1.52] hash: 03AC674216F3E15C761EE1A5E255F067953623C8B388B4459E13F978D7C846F4 algo: 2.16.840.1.101.3.4.2.1 info: 3031300D06096086480165030402010500042003AC674216F3E15C761EE1A5E255F067953623C8B388B4459E13F978D7C846F4 [BC 1.53] hash: 03AC674216F3E15C761EE1A5E255F067953623C8B388B4459E13F978D7C846F4 algo: 2.16.840.1.101.3.4.2.1 info: 302F300B0609608648016503040201042003AC674216F3E15C761EE1A5E255F067953623C8B388B4459E13F978D7C846F4
因此,BouncyCastle 1.53不同地编码DigestInfo对象!而1.52(及以下)的编码是RFC 3447 Section 9.2预期的编码.
看看ASN.1转储可以看出,BC 1.52将AlgorithmIdentifier编码为
2 13: SEQUENCE { <06 09> 4 9: OBJECT IDENTIFIER sha-256 (2 16 840 1 101 3 4 2 1) : (NIST Algorithm) <05 00> 15 0: NULL : }
而BC 1.53创建
2 11: SEQUENCE { <06 09> 4 9: OBJECT IDENTIFIER sha-256 (2 16 840 1 101 3 4 2 1) : (NIST Algorithm) : }
所以在1.53中算法参数完全缺失.这表明改变线
AlgorithmIdentifier sha256Aid = new AlgorithmIdentifier(NISTObjectIdentifiers.id_sha256,null);
至
AlgorithmIdentifier sha256Aid = new AlgorithmIdentifier(NISTObjectIdentifiers.id_sha256,DERNull.INSTANCE);