java – Reader#lines()由于其拼接器中的不可配置的批量大小策略而非常并行化

前端之家收集整理的这篇文章主要介绍了java – Reader#lines()由于其拼接器中的不可配置的批量大小策略而非常并行化前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。
当流源是Reader时,我无法实现流处理的良好并行化.在四核cpu上运行下面的代码我观察到3个内核首先被使用,然后突然下降到两个,然后是一个核心.整体cpu利用率在50%左右.

请注意以下示例的特点:

>只有6000行;
>每行约20ms进行处理;
>整个过程大约需要一分钟.

这意味着所有的压力都在cpu上,I / O很小.这个例子是一个自动并行化的坐式鸭子.

import static java.util.concurrent.TimeUnit.NANOSECONDS;
import static java.util.concurrent.TimeUnit.SECONDS;

... class imports elided ...    

public class Main
{
  static final AtomicLong totalTime = new AtomicLong();

  public static void main(String[] args) throws IOException {
    final long start = System.nanoTime();
    final Path inputPath = createInput();
    System.out.println("Start processing");

    try (PrintWriter w = new PrintWriter(Files.newBufferedWriter(Paths.get("output.txt")))) {
      Files.lines(inputPath).parallel().map(Main::processLine)
        .forEach(w::println);
    }

    final double cpuTime = totalTime.get(),realTime = System.nanoTime()-start;
    final int cores = Runtime.getRuntime().availableProcessors();
    System.out.println("          Cores: " + cores);
    System.out.format("       cpu time: %.2f s\n",cpuTime/SECONDS.toNanos(1));
    System.out.format("      Real time: %.2f s\n",realTime/SECONDS.toNanos(1));
    System.out.format("cpu utilization: %.2f%%",100.0*cpuTime/realTime/cores);
  }

  private static String processLine(String line) {
    final long localStart = System.nanoTime();
    double ret = 0;
    for (int i = 0; i < line.length(); i++)
      for (int j = 0; j < line.length(); j++)
        ret += Math.pow(line.charAt(i),line.charAt(j)/32.0);
    final long took = System.nanoTime()-localStart;
    totalTime.getAndAdd(took);
    return NANOSECONDS.toMillis(took) + " " + ret;
  }

  private static Path createInput() throws IOException {
    final Path inputPath = Paths.get("input.txt");
    try (PrintWriter w = new PrintWriter(Files.newBufferedWriter(inputPath))) {
      for (int i = 0; i < 6_000; i++) {
        final String text = String.valueOf(System.nanoTime());
        for (int j = 0; j < 25; j++) w.print(text);
        w.println();
      }
    }
    return inputPath;
  }
}

我的典型输出

Cores: 4
       cpu time: 110.23 s
      Real time: 53.60 s
cpu utilization: 51.41%

为了比较,如果我使用一个稍微修改的变体,我首先收集到列表中,然后处理:

Files.lines(inputPath).collect(toList()).parallelStream().map(Main::processLine)
  .forEach(w::println);

我得到这个典型的输出

Cores: 4
       cpu time: 138.43 s
      Real time: 35.00 s
cpu utilization: 98.87%

什么可以解释这个效果,如何解决这个问题呢?

注意,我最初在servlet输入流的读者上观察到这一点,因此它不是FileReader的特定的.

解决方法

这里是答案,在Spliterators.IteratorSpliterator的源代码中,BufferedReader#lines()使用的代码
@Override
    public Spliterator<T> trySplit() {
        /*
         * Split into arrays of arithmetically increasing batch
         * sizes.  This will only improve parallel performance if
         * per-element Consumer actions are more costly than
         * transferring them into an array.  The use of an
         * arithmetic progression in split sizes provides overhead
         * vs parallelism bounds that do not particularly favor or
         * penalize cases of lightweight vs heavyweight element
         * operations,across combinations of #elements vs #cores,* whether or not either are known.  We generate
         * O(sqrt(#elements)) splits,allowing O(sqrt(#cores))
         * potential speedup.
         */
        Iterator<? extends T> i;
        long s;
        if ((i = it) == null) {
            i = it = collection.iterator();
            s = est = (long) collection.size();
        }
        else
            s = est;
        if (s > 1 && i.hasNext()) {
            int n = batch + BATCH_UNIT;
            if (n > s)
                n = (int) s;
            if (n > MAX_BATCH)
                n = MAX_BATCH;
            Object[] a = new Object[n];
            int j = 0;
            do { a[j] = i.next(); } while (++j < n && i.hasNext());
            batch = j;
            if (est != Long.MAX_VALUE)
                est -= j;
            return new ArraySpliterator<>(a,j,characteristics);
        }
        return null;
    }

也值得注意的是常数:

static final int BATCH_UNIT = 1 << 10;  // batch array size increment
static final int MAX_BATCH = 1 << 25;  // max batch array size;

所以在我的例子中,我使用6,000个元素,因为批量大小为1024,所以我只需要批量批次.这正好解释了我的观察结果:最初使用三个内核,当两个小批次完成时,它们都会被丢弃.在此期间,我尝试了一个具有6万个元素的修改示例,然后我得到几乎100%的cpu利用率.

为了解决我的问题,我已经开发了下面的代码,它允许我将任何现有流转换成一个Spliterator#trySplit将其分割成指定大小的批次.从我的问题使用它的最简单的方法是这样的:

toFixedBatchStream(Files.newBufferedReader(inputPath).lines(),20)

在较低级别上,下面的类是一个Spliterator包装器,它改变了包装的spliterator的trySplit行为,并保留其他方面不变.

import static java.util.Spliterators.spliterator;
import static java.util.stream.StreamSupport.stream;

import java.util.Comparator;
import java.util.Spliterator;
import java.util.function.Consumer;
import java.util.stream.Stream;

public class FixedBatchSpliteratorWrapper<T> implements Spliterator<T> {
  private final Spliterator<T> spliterator;
  private final int batchSize;
  private final int characteristics;
  private long est;

  public FixedBatchSpliteratorWrapper(Spliterator<T> toWrap,long est,int batchSize) {
    final int c = toWrap.characteristics();
    this.characteristics = (c & SIZED) != 0 ? c | SUBSIZED : c;
    this.spliterator = toWrap;
    this.est = est;
    this.batchSize = batchSize;
  }
  public FixedBatchSpliteratorWrapper(Spliterator<T> toWrap,int batchSize) {
    this(toWrap,toWrap.estimateSize(),batchSize);
  }

  public static <T> Stream<T> toFixedBatchStream(Stream<T> in,int batchSize) {
    return stream(new FixedBatchSpliteratorWrapper<>(in.spliterator(),batchSize),true);
  }

  @Override public Spliterator<T> trySplit() {
    final HoldingConsumer<T> holder = new HoldingConsumer<>();
    if (!spliterator.tryAdvance(holder)) return null;
    final Object[] a = new Object[batchSize];
    int j = 0;
    do a[j] = holder.value; while (++j < batchSize && tryAdvance(holder));
    if (est != Long.MAX_VALUE) est -= j;
    return spliterator(a,characteristics());
  }
  @Override public boolean tryAdvance(Consumer<? super T> action) {
    return spliterator.tryAdvance(action);
  }
  @Override public void forEachRemaining(Consumer<? super T> action) {
    spliterator.forEachRemaining(action);
  }
  @Override public Comparator<? super T> getComparator() {
    if (hasCharacteristics(SORTED)) return null;
    throw new IllegalStateException();
  }
  @Override public long estimateSize() { return est; }
  @Override public int characteristics() { return characteristics; }

  static final class HoldingConsumer<T> implements Consumer<T> {
    Object value;
    @Override public void accept(T value) { this.value = value; }
  }
}

猜你在找的Java相关文章