如果我们在两者中都提供相同的种子,我需要一个在iOS和
Android中产生相同数字序列的随机数生成器.
我用srand(1000)尝试了rand()函数.但它给出了不同的输出.
然后我尝试了mersenne twister.但这也为同一种子提供了不同的序列.
有谁可以帮我这个.
我正在使用cocos2d-x进行开发.
解决方法
我已经改编了一个在线CRandomMersenne库,我真的很抱歉,我再也找不到那个来源了.但这是我的Mersenne Twister实施:
// Define 32 bit signed and unsigned integers. // Change these definitions,if necessary,to match a particular platform #if defined(_WIN16) || defined(__MSDOS__) || defined(_MSDOS) // 16 bit systems use long int for 32 bit integer typedef long int int32; // 32 bit signed integer typedef unsigned long int uint32; // 32 bit unsigned integer #else // Most other systems use int for 32 bit integer typedef int int32; // 32 bit signed integer typedef unsigned int uint32; // 32 bit unsigned integer #endif // Define 64 bit signed and unsigned integers,if possible #if (defined(__WINDOWS__) || defined(_WIN32)) && (defined(_MSC_VER) || defined(__INTEL_COMPILER)) // Microsoft and other compilers under Windows use __int64 typedef __int64 int64; // 64 bit signed integer typedef unsigned __int64 uint64; // 64 bit unsigned integer #define INT64_DEFINED // Remember that int64 is defined #elif defined(__unix__) && (defined(_M_IX86) || defined(_M_X64)) // Gnu and other compilers under Linux etc. use long long typedef long long int64; // 64 bit signed integer typedef unsigned long long uint64; // 64 bit unsigned integer #define INT64_DEFINED // Remember that int64 is defined #else // 64 bit integers not defined // You may include definitions for other platforms here #endif void EndOfProgram(void); // System-specific exit code (userintf.cpp) void FatalError(char * ErrorText); // System-specific error reporting (userintf.cpp) class CRandomMersenne { // Encapsulate random number generator #if 0 // Define constants for type MT11213A: #define MERS_N 351 #define MERS_M 175 #define MERS_R 19 #define MERS_U 11 #define MERS_S 7 #define MERS_T 15 #define MERS_L 17 #define MERS_A 0xE4BD75F5 #define MERS_B 0x655E5280 #define MERS_C 0xFFD58000 #else // or constants for type MT19937: #define MERS_N 624 #define MERS_M 397 #define MERS_R 31 #define MERS_U 11 #define MERS_S 7 #define MERS_T 15 #define MERS_L 18 #define MERS_A 0x9908B0DF #define MERS_B 0x9D2C5680 #define MERS_C 0xEFC60000 #endif public: CRandomMersenne(uint32 seed) { // Constructor RandomInit(seed); LastInterval = 0;} void RandomInit(uint32 seed); // Re-seed void RandomInitByArray(uint32 seeds[],int length); // Seed by more than 32 bits int IRandom (int min,int max); // Output random integer int IRandomX(int min,int max); // Output random integer,exact double Random(); // Output random float uint32 BRandom(); // Output random bits private: void Init0(uint32 seed); // Basic initialization procedure uint32 mt[MERS_N]; // State vector int mti; // Index into mt uint32 LastInterval; // Last interval length for IRandomX uint32 RLimit; // Rejection limit used by IRandomX enum TArch {LITTLE_ENDIAN1,BIG_ENDIAN1,NONIEEE}; // Definition of architecture TArch Architecture; // Conversion to float depends on architecture }; class CRandomMother { // Encapsulate random number generator public: void RandomInit(uint32 seed); // Initialization int IRandom(int min,int max); // Get integer random number in desired interval double Random(); // Get floating point random number uint32 BRandom(); // Output random bits CRandomMother(uint32 seed) { // Constructor RandomInit(seed);} protected: uint32 x[5]; // History buffer }; #endif void CRandomMersenne::Init0(uint32 seed) { // Detect computer architecture union {double f; uint32 i[2];} convert; convert.f = 1.0; if (convert.i[1] == 0x3FF00000) Architecture = LITTLE_ENDIAN1; else if (convert.i[0] == 0x3FF00000) Architecture = BIG_ENDIAN1; else Architecture = NONIEEE; // Seed generator mt[0]= seed; for (mti=1; mti < MERS_N; mti++) { mt[mti] = (1812433253UL * (mt[mti-1] ^ (mt[mti-1] >> 30)) + mti); } } void CRandomMersenne::RandomInit(uint32 seed) { // Initialize and seed Init0(seed); // Randomize some more for (int i = 0; i < 37; i++) BRandom(); } void CRandomMersenne::RandomInitByArray(uint32 seeds[],int length) { // Seed by more than 32 bits int i,j,k; // Initialize Init0(19650218); if (length <= 0) return; // Randomize mt[] using whole seeds[] array i = 1; j = 0; k = (MERS_N > length ? MERS_N : length); for (; k; k--) { mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 30)) * 1664525UL)) + seeds[j] + j; i++; j++; if (i >= MERS_N) {mt[0] = mt[MERS_N-1]; i=1;} if (j >= length) j=0;} for (k = MERS_N-1; k; k--) { mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 30)) * 1566083941UL)) - i; if (++i >= MERS_N) {mt[0] = mt[MERS_N-1]; i=1;}} mt[0] = 0x80000000UL; // MSB is 1; assuring non-zero initial array // Randomize some more mti = 0; for (int i = 0; i <= MERS_N; i++) BRandom(); } uint32 CRandomMersenne::BRandom() { // Generate 32 random bits uint32 y; if (mti >= MERS_N) { // Generate MERS_N words at one time const uint32 LOWER_MASK = (1LU << MERS_R) - 1; // Lower MERS_R bits const uint32 UPPER_MASK = 0xFFFFFFFF << MERS_R; // Upper (32 - MERS_R) bits static const uint32 mag01[2] = {0,MERS_A}; int kk; for (kk=0; kk < MERS_N-MERS_M; kk++) { y = (mt[kk] & UPPER_MASK) | (mt[kk+1] & LOWER_MASK); mt[kk] = mt[kk+MERS_M] ^ (y >> 1) ^ mag01[y & 1];} for (; kk < MERS_N-1; kk++) { y = (mt[kk] & UPPER_MASK) | (mt[kk+1] & LOWER_MASK); mt[kk] = mt[kk+(MERS_M-MERS_N)] ^ (y >> 1) ^ mag01[y & 1];} y = (mt[MERS_N-1] & UPPER_MASK) | (mt[0] & LOWER_MASK); mt[MERS_N-1] = mt[MERS_M-1] ^ (y >> 1) ^ mag01[y & 1]; mti = 0; } y = mt[mti++]; #if 1 // Tempering (May be omitted): y ^= y >> MERS_U; y ^= (y << MERS_S) & MERS_B; y ^= (y << MERS_T) & MERS_C; y ^= y >> MERS_L; #endif return y; } double CRandomMersenne::Random() { // Output random float number in the interval 0 <= x < 1 union {double f; uint32 i[2];} convert; uint32 r = BRandom(); // Get 32 random bits // The fastest way to convert random bits to floating point is as follows: // Set the binary exponent of a floating point number to 1+bias and set // the mantissa to random bits. This will give a random number in the // interval [1,2). Then subtract 1.0 to get a random number in the interval // [0,1). This procedure requires that we know how floating point numbers // are stored. The storing method is tested in function RandomInit and saved // in the variable Architecture. // This shortcut allows the compiler to optimize away the following switch // statement for the most common architectures: #if defined(_M_IX86) || defined(_M_X64) || defined(__LITTLE_ENDIAN__) Architecture = LITTLE_ENDIAN1; #elif defined(__BIG_ENDIAN__) Architecture = BIG_ENDIAN1; #endif switch (Architecture) { case LITTLE_ENDIAN1: convert.i[0] = r << 20; convert.i[1] = (r >> 12) | 0x3FF00000; return convert.f - 1.0; case BIG_ENDIAN1: convert.i[1] = r << 20; convert.i[0] = (r >> 12) | 0x3FF00000; return convert.f - 1.0; case NONIEEE: default: ; } // This somewhat slower method works for all architectures,including // non-IEEE floating point representation: return (double)r * (1./((double)(uint32)(-1L)+1.)); } int CRandomMersenne::IRandom(int min,int max) { // Output random integer in the interval min <= x <= max // Relative error on frequencies < 2^-32 if (max <= min) { if (max == min) return min; else return 0x80000000; } // Multiply interval with random and truncate int r = int((max - min + 1) * Random()) + min; if (r > max) r = max; return r; } int CRandomMersenne::IRandomX(int min,int max) { // Output random integer in the interval min <= x <= max // Each output value has exactly the same probability. // This is obtained by rejecting certain bit values so that the number // of possible bit values is divisible by the interval length if (max <= min) { if (max == min) return min; else return 0x80000000; } #ifdef INT64_DEFINED // 64 bit integers available. Use multiply and shift method uint32 interval; // Length of interval uint64 longran; // Random bits * interval uint32 iran; // Longran / 2^32 uint32 remainder; // Longran % 2^32 interval = uint32(max - min + 1); if (interval != LastInterval) { // Interval length has changed. Must calculate rejection limit // Reject when remainder = 2^32 / interval * interval // RLimit will be 0 if interval is a power of 2. No rejection then RLimit = uint32(((uint64)1 << 32) / interval) * interval - 1; LastInterval = interval; } do { // Rejection loop longran = (uint64)BRandom() * interval; iran = (uint32)(longran >> 32); remainder = (uint32)longran; } while (remainder > RLimit); // Convert back to signed and return result return (int32)iran + min; #else // 64 bit integers not available. Use modulo method uint32 interval; // Length of interval uint32 bran; // Random bits uint32 iran; // bran / interval uint32 remainder; // bran % interval interval = uint32(max - min + 1); if (interval != LastInterval) { // Interval length has changed. Must calculate rejection limit // Reject when iran = 2^32 / interval // We can't make 2^32 so we use 2^32-1 and correct afterwards RLimit = (uint32)0xFFFFFFFF / interval; if ((uint32)0xFFFFFFFF % interval == interval - 1) RLimit++; } do { // Rejection loop bran = BRandom(); iran = bran / interval; remainder = bran % interval; } while (iran >= RLimit); // Convert back to signed and return result return (int32)remainder + min; #endif }
上面这个类的用法很简单:
CRandomMersenne generator(<some_seed>); generator.random(); // random value [0,1] generator.IRandom(a,b); // random value [a,b]
我已经测试了很多次,它比我见过的大多数随机数发生器表现得更好更快.
很多时候,我依赖于这样一个事实:给定种子是确定性的,所以你可以使用它.我将尝试找到该代码的原始来源并将其归功于作者.