1. 利用defer、recover来实现try...catch
func Try(fun func(),handler func(interface{})) { defer func() { if err := recover(); err != nil { handler(err) } }() fun() } func main() { Try(func() { panic("foo") },func(e interface{}) { print(e) }) }
2. 关于error的一个程序
error是一个类型,类似于string,error也可以定义自己的类型
package main import "errors" import "fmt" // By convention,errors are the last return value and // have type `error`,a built-in interface. func f1(arg int) (int,error) { if arg == 42 { // `errors.New` constructs a basic `error` value // with the given error message. return -1,errors.New("can't work with 42") } // A nil value in the error position indicates that // there was no error. return arg + 3,nil } // It's possible to use custom types as `error`s by // implementing the `Error()` method on them. Here's a // variant on the example above that uses a custom type // to explicitly represent an argument error. type argError struct { arg int prob string } func (e *argError) Error() string { return fmt.Sprintf("%d - %s",e.arg,e.prob) } func f2(arg int) (int,error) { if arg == 42 { // In this case we use `&argError` Syntax to build // a new struct,supplying values for the two // fields `arg` and `prob`. return -1,&argError{arg,"can't work with it"} } return arg + 3,nil } func main() { // The two loops below test out each of our // error-returning functions. Note that the use of an // inline error check on the `if` line is a common // idiom in Go code. for _,i := range []int{7,42} { if r,e := f1(i); e != nil { fmt.Println("f1 Failed:",e) } else { fmt.Println("f1 worked:",r) } } for _,e := f2(i); e != nil { fmt.Println("f2 Failed:",e) } else { fmt.Println("f2 worked:",r) } } // If you want to programmatically use the data in // a custom error,you'll need to get the error as an // instance of the custom error type via type // assertion. _,e := f2(42) if ae,ok := e.(*argError); ok { fmt.Println(ae.arg) fmt.Println(ae.prob) } }
3. timer和ticker都是可以停止的
package main import ( "fmt" "time" ) func main() { ticker := time.NewTicker(time.Millisecond * 500) go func() { for t := range ticker.C { fmt.Println("ticker is at ",t) } }() time.Sleep(time.Millisecond * 1500) ticker.Stop() fmt.Println("ticker stopped") }
package main import ( "fmt" "time" ) func main() { timer1 := time.NewTimer(time.Second * 2) <-timer1.C fmt.Println("timer1 expired.") timer2 := time.NewTimer(time.Second * 1) go func() { <-timer2.C fmt.Println("timer2 expired.") }() ok := timer2.Stop() if ok { fmt.Println("timer2 stopped.") } }
4. 一个比较复杂的channel的例子
package main import ( "fmt" "math/rand" "sync/atomic" "time" ) type readOp struct { key int resp chan int } type writeOp struct { key int val int resp chan bool } func main() { var ops int64 = 0 reads := make(chan *readOp) writes := make(chan *writeOp) go func() { var state = make(map[int]int) for { select { case read := <-reads: read.resp <- state[read.key] case write := <-writes: state[write.key] = write.val write.resp <- true } } }() for r := 0; r < 100; r++ { go func() { for { read := &readOp{ key: rand.Intn(5),resp: make(chan int)} reads <- read <-read.resp atomic.AddInt64(&ops,1) } }() } for w := 0; w < 10; w++ { go func() { for { write := &writeOp{ key: rand.Intn(5),val: rand.Intn(100),resp: make(chan bool)} writes <- write <-write.resp atomic.AddInt64(&ops,1) } }() } time.Sleep(time.Second) opsFinal := atomic.LoadInt64(&ops) fmt.Println("ops:",opsFinal) }5. sort包封装了一些常用的排序方法,用起来还是很方便的
package main import "fmt" import "sort" func main() { strs := []string{"c","a","b"} sort.Strings(strs) fmt.Println("Strings:",strs) ints := []int{7,2,4} sort.Ints(ints) fmt.Println("Ints: ",ints) s := sort.IntsAreSorted(ints) fmt.Println("Sorted: ",s) }
6. slice的引用特性
package main import ( "fmt" ) func main() { array := make([]int,3) array = append(array,1) a := array b := array a = append(a,2) b = append(b,3) fmt.Println(a) }
结果是什么呢?答案揭晓,输出是“[1 3]”。
就我的理解,slice 是一个{指向内存的指针,当前已有元素的长度,内存最大长度}的结构体,其中只有指向内存的指针一项是真正具有引用语义的域,另外两项都是每个 slice 自身的值。因此,对 slice 做赋值时,会出现两个 slice 指向同一块内存,但是又分别具有各自的元素长度和最大长度。程序里把 array 赋值给 a 和 b,所以 a 和 b 会同时指向 array 的内存,并各自保存一份当前元素长度 1 和最大长度 3。之后对 a 的追加操作,由于没有超出 a 的最大长度,因此只是把新值 2 追加到 a 指向的内存,并把 a 的“当前已有元素的长度”增加 1。之后对 b 进行追加操作时,因为 a 和 b 各自拥有各自的“当前已有元素的长度”,因此 b 的这个值依旧是 1,追加操作依旧写在 b 所指向内存的偏移为 1 的位置,也就复写了之前对 a 追加时写入的 2。
为了让 slice 具有引用语义,同时不增加 array 的实现负担,又不增加运行时的开销,似乎也只能忍受这个奇怪的语法了。