[Golang]怎么让数据集合支持并发访问?

前端之家收集整理的这篇文章主要介绍了[Golang]怎么让数据集合支持并发访问?前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。

在go语言里,提倡用信道通讯的方式来替代显式的同步机制。但是我发现有的时候用信道通讯方式实现的似乎也不是很好(暂不考虑效率问题)。
假设有一个帐号的集合,需要在这个集合上实现一些操作,比如查找修改等。这个集合的操作必须是支持并发的。

如果用锁的方式(方案1)

实现大概是这样:
import "sync"

type Info struct {
	age int
}
type AccountMap struct {
	accounts map[string]*Info
	mutex    sync.Mutex
}

func NewAccountMap() *AccountMap {
	return &AccountMap{
		accounts: make(map[string]*Info),}
}
func (p *AccountMap) add(name string,age int) {
	p.mutex.Lock()
	defer p.mutex.Unlock()
	p.accounts[name] = &Info{age}
}
func (p *AccountMap) del(name string) {
	p.mutex.Lock()
	defer p.mutex.Unlock()
	delete(p.accounts,name)
}
func (p *AccountMap) find(name string) *Info {
	p.mutex.Lock()
	defer p.mutex.Unlock()
	res,ok := p.accounts[name]
	if !ok {
		return nil
	}
	inf := *res
	return &inf
}

用信道来实现试试(方案2)

type Info struct {
	age int
}
type AccountMap struct {
	accounts map[string]*Info
	ch       chan func()
}

func NewAccountMap() *AccountMap {
	p := &AccountMap{
		accounts: make(map[string]*Info),ch:       make(chan func()),}
	go func() {
		for {
			(<-p.ch)()
		}
	}()
	return p
}
func (p *AccountMap) add(name string,age int) {
	p.ch <- func() {
		p.accounts[name] = &Info{age}
	}
}
func (p *AccountMap) del(name string) {
	p.ch <- func() {
		delete(p.accounts,name)
	}
}
func (p *AccountMap) find(name string) *Info {
	// 每次查询都要创建一个信道
	c := make(chan *Info)
	p.ch <- func() {
		res,ok := p.accounts[name]
		if !ok {
			c <- nil
		} else {
			inf := *res
			c <- &inf
		}
	}
	return <-c
}

这里有个问题,每次调用find都要创建一个信道。

那么试试把信道作为参数(方案3)

只需要修改find函数的实现:
// 信道对象作为参数,暴露了实现机制
func (p *AccountMap) find(name string,c chan *Info) *Info {
	p.ch <- func() {
		res,ok := p.accounts[name]
		if !ok {
			c <- nil
		} else {
			inf := *res
			c <- &inf
		}
	}
	return <-c
}

总结一下,现在的问题就是三种方案都有不尽如人意之处:

方案1:使用锁机制,不太符合go解决问题的方式。

方案2:对于需要返回结果的查询,每次查询都要创建一个信道,比较浪费资源。

方案3:需要在函数参数中指定信道对象,把实现机制暴露了。

那么有没有什么更好的方案呢?

2012.12.14:方案2 还有一个改进版本:利用预分配以及可回收的channel来提高资源利用率。这个技术在多个goroutine等待一个主动对象返回自己的数据时会比较有用。例如网游服务器中登录服务器里每个玩家的连接用一个goroutine来处理;另外一个主动对象代表帐号服务器连接用于验证帐号合法性。玩家goroutine会把各自的输入的玩家帐号密码发送给这个主动对象,并阻塞等待主动对象返回验证结果。因为有多个玩家同时发起帐号验证请求,所以主动对象需要把返回结果进行分发,因此可以在发送请求的时候申请一个信道并等待这个信道。

代码如下:
type Info struct {
	age int
}
type AccountMap struct {
	accounts map[string]*Info
	ch       chan func()
	tokens   chan chan *Info
}

func NewAccountMap() *AccountMap {
	p := &AccountMap{
		accounts: make(map[string]*Info),tokens:   make(chan chan *Info,128),}
	for i := 0; i < cap(p.tokens); i++ {
		p.tokens <- make(chan *Info)
	}
	go func() {
		for {
			(<-p.ch)()
		}
	}()
	return p
}
func (p *AccountMap) add(name string,name)
	}
}
func (p *AccountMap) find(name string) *Info {
	// 每次查询都要获取一个信道
	c := <-p.tokens
	p.ch <- func() {
		res,ok := p.accounts[name]
		if !ok {
			c <- nil
		} else {
			inf := *res
			c <- &inf
		}
	}
	inf := <-c
	// 回收信道
	p.tokens <- c
	return inf
}

补充一下golang-china上的评论

xushiwei

在你的方式里面,用 channel 其实把所有请求串行化。 另外,从成本上来说,channel 远大于锁。因为 channel 本身显然是用锁 + 信号唤醒机制实现的。

steve wang

是不是可以这样总结: 1.对于共享给各个goroutine的数据对象的并发访问,使用锁来控制 2.对于goroutine之间的通信,使用信道

longshanksmo

单就性能来看,现在下这种结论有些草率。并发和性能问题错宗复杂,不同的场景可能会产生完全相反的结论。 还有众多因素需要考虑: 首先,不同的用况下,锁粒度不同。在你的案例中是map操作,锁粒度很小。但如果是某种重载操作,或者存在阻塞,锁粒度会很大。那时用锁就不划算。 其次,chan的锁粒度很小,基本固定,可预测。在实际业务中,性能可预测非常重要,决定了部署时的资源投入和调配。 最重要一点,如果进程内的所有goroutine是在单个线程内运行,那么chan的锁是不需要的。这样才能真正发挥coroutine的优势。现在的go编译器似乎还没有对这个做优化,不知将来是否会进化。 总之,并发方面还没有一改而论

猜你在找的Go相关文章