golang-goroutine与channel:高效的channel

前端之家收集整理的这篇文章主要介绍了golang-goroutine与channel:高效的channel前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。
golang有两个非常大的特性,那就是goruntime与channel,这两个特性直接将开发人员从并发和线程同步中解放了出来,使高并发和线程同步之间代码的编写变得异常简单,并且占用资源少,同步传输效率高。

资源占用方面,goroutine 会从4096字节的初始栈内存占用开始按需增长或缩减内存占用。同步传输效率方面,我曾经在松本行弘的《代码的未来》一书上看到一个简洁的例子(书上的代码中行末带有分号,目前golang中已经取消了源代码中行末的分号,由编译器代为添加,一行代码包含多个语句则需要分号分隔)。下列代码在原代码基础上做了适当调整。

package main

import (
	"fmt"
	"time"
)

func chanFlow(left,right chan int,bufferLen int) {
	if bufferLen <= 0 {
		left <- 1 + <-right
	} else {
		for i := 0; i < bufferLen; i++ {
			left <- 1 + <-right
		}
	}
}

func main() {
	nruntime := 100000
	lastChan := make(chan int)

	var left chan int = nil
	right := lastChan

	begin := time.Now()
	fmt.Println("begin at:",begin)
	for i := 0; i < nruntime; i++ {
		left,right = right,make(chan int)
		go chanFlow(left,right,0)
	}

	right <- 0
	result := <-lastChan

	end := time.Now()
	fmt.Println("end   at:",end,time.Since(begin))
	fmt.Println(result)
}
程序创建了10w零1个无缓冲channel,10w个goruntime,数据在goruntime中从第一个channel流向最后一个channel,每流入一次数值加一。代码在我的笔记本(2.7 GHz Intel Core i5,8 GB 1867 MHz DDR3)运行结果如下:
begin at: 2016-08-28 14:42:04.972728029 +0800 CST
end at: 2016-08-28 14:42:05.454288408 +0800 CST 481.560725ms
耗时不到半秒。

上面的例子中使用的是无缓冲的channel,把代码修改为带1000个单位缓冲的channel再试试看,代码如下:

func chanFlow(left,bufferLen int) {...}
func main() {
	nruntime := 100000
	chanBuffer := 1000
	result := make([]int,100)

	lastChan := make(chan int,chanBuffer)

	var left chan int = nil
	right := lastChan

	begin := time.Now()
	fmt.Println("begin at:",make(chan int,chanBuffer)
		go chanFlow(left,chanBuffer)
	}

	for i := 0; i < chanBuffer; i++ {
		right <- 0
	}

	for i := 0; i < chanBuffer; i++ {
		result = append(result,<-lastChan)
	}

	end := time.Now()
	fmt.Println("end   at:",time.Since(begin))
	fmt.Println(result)
}
运行结果如下:
begin at: 2016-08-28 14:54:09.352472708 +0800 CST
end at: 2016-08-28 14:54:14.155240335 +0800 CST 4.802767822s
不到5秒的时间,1000个数据在10w个goruntime中穿过了10w零1个channel。

而在实际生产中,更多的需要传递的数据是字符串,那么现在把代码修改一下试试,代码如下:

package main

import (
	"crypto/rand"
	"encoding/base64"
	"fmt"
	"io"
	"time"
)

func chanFlow(left,right chan string,bufferLen int) {
	if bufferLen <= 0 {
		left <- <-right
	} else {
		for i := 0; i < bufferLen; i++ {
			left <- <-right
		}
	}
}

func genString() string {
	b := make([]byte,32)
	if _,err := io.ReadFull(rand.Reader,b); err != nil {
		return ""
	} else {
		return base64.URLEncoding.EncodeToString(b)
	}
}

func main() {

	nruntime := 100000
	chanBuffer := 1000
	result := make([]string,100)

	lastChan := make(chan string,chanBuffer)
	dataForChan := make([]string,chanBuffer)

	for i := 0; i < chanBuffer; i++ {
		dataForChan = append(dataForChan,genString())
	}

	var left chan string = nil
	right := lastChan

	begin := time.Now()
	fmt.Println("begin at:",begin)
	for i := 0; i < nruntime; i++ {

		left,make(chan string,chanBuffer)
	}
	for i := 0; i < chanBuffer; i++ {
		right <- dataForChan[i]
	}

	for i := 0; i < chanBuffer; i++ {
		result = append(result,time.Since(begin))
	fmt.Println(result)
}

运行结果如下:

begin at: 2016-08-28 15:06:25.349599328 +0800 CST end at: 2016-08-28 15:06:31.288183546 +0800 CST 5.938584364s 不到6秒的时间,1000个44字节的随机字符串在10w个goruntime中穿过了10w零1个channel。而1w个44字节的随机字符串在1w个goruntime中穿过了1w零1个channel耗时约为5秒。 以上可以看出,golang中数据在goruntime中通过channel同步的效率非常高。

猜你在找的Go相关文章