一、sync Map 包整体结构
本文主要阐述:Load、Store、Delete,更加详细的阐述可以参考源码描述(建议先大体浏览一下Map源码)。
导言:
- 空间换时间。 通过冗余的两个数据结构(read、dirty),实现加锁对性能的影响。
- 使用只读数据(read),避免读写冲突。
- 动态调整,miss次数多了之后,将dirty数据提升为read。
- double-checking。
- 延迟删除。 删除一个键值只是打标记(会将key对应value的pointer置为nil,但read中仍然有这个key:key;value:nil的键值对),只有在提升dirty的时候才清理删除的数据。
- 优先从read读取、更新、删除,因为对read的读取不需要锁。
- 虽然read和dirty有冗余数据,但这些数据是通过指针指向同一个数据,所以尽管Map的value会很大,但是冗余的空间占用还是有限的。
二、基础数据结构
1、Map
// Map is a concurrent map with amortized-constant-time loads,stores,and deletes. // It is safe for multiple goroutines to call a Map's methods concurrently. // // It is optimized for use in concurrent loops with keys that are // stable over time,and either few steady-state stores,or stores // localized to one goroutine per key. // // For use cases that do not share these attributes,it will likely have // comparable or worse performance and worse type safety than an ordinary // map paired with a read-write mutex. // // The zero Map is valid and empty. // // A Map must not be copied after first use.
//该 Map 是线程安全的,读取,插入,删除也都保持着常数级的时间复杂度。 //多个 goroutines 协程同时调用 Map 方法也是线程安全的。该 Map 的零值是有效的, //并且零值是一个空的 Map 。线程安全的 Map 在第一次使用之后,不允许被拷贝。
type Map struct {
mu Mutex
// read contains the portion of the map's contents that are safe for
// concurrent access (with or without mu held).
//
// The read field itself is always safe to load,but must only be stored with
// mu held.
//
// Entries stored in read may be updated concurrently without mu,but updating
// a prevIoUsly-expunged entry requires that the entry be copied to the dirty
// map and unexpunged with mu held.
// 一个只读的数据结构,因为只读,所以不会有读写冲突。
// 所以从这个数据中读取总是安全的。
// 实际上,实际也会更新这个数据的entries,如果entry是未删除的(unexpunged),并不需要加锁。如果entry已经被删除了,需要加锁,以便更新dirty数据。
read atomic.Value // readOnly
// dirty contains the portion of the map's contents that require mu to be
// held. To ensure that the dirty map can be promoted to the read map quickly,
// it also includes all of the non-expunged entries in the read map.
//
// Expunged entries are not stored in the dirty map. An expunged entry in the
// clean map must be unexpunged and added to the dirty map before a new value
// can be stored to it.
//
// If the dirty map is nil,the next write to the map will initialize it by
// making a shallow copy of the clean map,omitting stale entries.
// dirty数据包含当前的map包含的entries,它包含最新的entries(包括read中未删除的数据,虽有冗余,但是提升dirty字段为read的时候非常快,不用一个一个的复制,而是直接将这个数据结构作为read字段的一部分),有些数据还可能没有移动到read字段中。
// 对于dirty的操作需要加锁,因为对它的操作可能会有读写竞争。
// 当dirty为空的时候, 比如初始化或者刚提升完,下一次的写操作会复制read字段中未删除的数据到这个数据中。
dirty map[interface{}]*entry
// misses counts the number of loads since the read map was last updated that
// needed to lock mu to determine whether the key was present.
//
// Once enough misses have occurred to cover the cost of copying the dirty
// map,the dirty map will be promoted to the read map (in the unamended
// state) and the next store to the map will make a new dirty copy.
// 当从Map中读取entry的时候,如果read中不包含这个entry,会尝试从dirty中读取,这个时候会将misses加一,
// 当misses累积到 dirty的长度的时候, 就会将dirty提升为read,避免从dirty中miss太多次。因为操作dirty需要加锁。
misses int
}
2、readOnly
// readOnly is an immutable struct stored atomically in the Map.read field.
type readOnly struct {
m map[interface{}]*entry
// true if the dirty map contains some key not in m.
// 如果Map.dirty有些数据不在中的时候,这个值为true
amended bool
}
3、entry
// An entry is a slot in the map corresponding to a particular key.
type entry struct {
// p points to the interface{} value stored for the entry.
//
// If p == nil,the entry has been deleted and m.dirty == nil.
//
// If p == expunged,the entry has been deleted,m.dirty != nil,and the entry
// is missing from m.dirty.
//
// Otherwise,the entry is valid and recorded in m.read.m[key] and,if m.dirty
// != nil,in m.dirty[key].
//
// An entry can be deleted by atomic replacement with nil: when m.dirty is
// next created,it will atomically replace nil with expunged and leave
// m.dirty[key] unset.
//
// An entry's associated value can be updated by atomic replacement,provided
// p != expunged. If p == expunged,an entry's associated value can be updated
// only after first setting m.dirty[key] = e so that lookups using the dirty
// map find the entry.
//p有三种值:
//nil: entry已被删除了,并且m.dirty为nil
//expunged: entry已被删除了,并且m.dirty不为nil,而且这个entry不存在于m.dirty中
//其它: entry是一个正常的值
p unsafe.Pointer // *interface{}
}
4、Value
// A Value provides an atomic load and store of a consistently typed value. // Values can be created as part of other data structures. // The zero value for a Value returns nil from Load. // Once Store has been called,a Value must not be copied. // // A Value must not be copied after first use. type Value struct { noCopy noCopy v interface{} }
下图来自:@L_404_0@
三、Load
根据指定的key,查找对应的值value,如果不存在,通过ok反映
func (m *Map) Load(key interface{}) (value interface{},ok bool) {
read,_ := m.read.Load().(readOnly)
e,ok := read.m[key]
// 如果没找到,并且m.dirty中有新数据,需要从m.dirty查找,这个时候需要加锁
if !ok && read.amended {
m.mu.Lock()
// Avoid reporting a spurIoUs miss if m.dirty got promoted while we were
// blocked on m.mu. (If further loads of the same key will not miss,it's
// not worth copying the dirty map for this key.)
//double check,避免加锁的时候m.dirty提升为m.read,这个时候m.read可能被替换了。
read,_ = m.read.Load().(readOnly)
e,ok = read.m[key]
if !ok && read.amended {
e,ok = m.dirty[key]
// Regardless of whether the entry was present,record a miss: this key
// will take the slow path until the dirty map is promoted to the read
// map.
m.missLocked()
}
m.mu.Unlock()
}
if !ok {
return nil,false
}
return e.load()
}
func (m *Map) missLocked() {
m.misses++
if m.misses < len(m.dirty) {
return
}
m.read.Store(readOnly{m: m.dirty})
m.dirty = nil
m.misses = 0
}
四、Store
更新或者新增一个entry
// Store sets the value for a key.
func (m *Map) Store(key,value interface{}) {
read,_ := m.read.Load().(readOnly)
// 从 read map 中读取 key 成功并且取出的 entry 尝试存储 value 成功,直接返回
if e,ok := read.m[key]; ok && e.tryStore(&value) {
return
}
m.mu.Lock()
read,_ = m.read.Load().(readOnly)
if e,ok := read.m[key]; ok {
if e.unexpungeLocked() {//确保未被标记成删除,即e 指向的是非 nil 的
// The entry was prevIoUsly expunged,which implies that there is a
// non-nil dirty map and this entry is not in it.
//m.dirty中不存在这个键,所以加入m.dirty
m.dirty[key] = e
}
e.storeLocked(&value)
} else if e,ok := m.dirty[key]; ok {
e.storeLocked(&value)
} else {
if !read.amended {
// We're adding the first new key to the dirty map.
// Make sure it is allocated and mark the read-only map as incomplete.
m.dirtyLocked()
m.read.Store(readOnly{m: read.m,amended: true})
}
m.dirty[key] = newEntry(value)
}
m.mu.Unlock()
}
// tryStore stores a value if the entry has not been expunged. // // If the entry is expunged,tryStore returns false and leaves the entry // unchanged.
func (e *entry) tryStore(i *interface{}) bool {
p := atomic.LoadPointer(&e.p)
if p == expunged {
return false
}
for {
if atomic.CompareAndSwapPointer(&e.p,p,unsafe.Pointer(i)) {
return true
}
p = atomic.LoadPointer(&e.p)
if p == expunged {
return false
}
}
}
func (m *Map) dirtyLocked() {
if m.dirty != nil {
return
}
read,_ := m.read.Load().(readOnly)
m.dirty = make(map[interface{}]*entry,len(read.m))
for k,e := range read.m {
if !e.tryExpungeLocked() {
m.dirty[k] = e
}
}
}
func (e *entry) tryExpungeLocked() (isExpunged bool) {
p := atomic.LoadPointer(&e.p)
for p == nil {
// 将已经删除标记为nil的数据标记为expunged
if atomic.CompareAndSwapPointer(&e.p,nil,expunged) {
return true
}
p = atomic.LoadPointer(&e.p)
}
return p == expunged
}
// unexpungeLocked ensures that the entry is not marked as expunged. // If the entry was prevIoUsly expunged,it must be added to the dirty map // before m.mu is unlocked.
// unexpungeLocked 函数确保了 entry 没有被标记成已被清除。 // 如果 entry 先前被清除过了,那么在 mutex 解锁之前,它一定要被加入到 dirty map 中
//如果 entry 的 unexpungeLocked 返回为 true,那么就说明 entry //之前被标记成了 expunged,并经过 CAS 操作成功把它置为 nil。
func (e *entry) unexpungeLocked() (wasExpunged bool) {
return atomic.CompareAndSwapPointer(&e.p,expunged,nil)
}
五、Delete
删除一个键值
// Delete deletes the value for a key. func (m *Map) Delete(key interface{}) { read,_ := m.read.Load().(readOnly) e,ok := read.m[key] if !ok && read.amended { m.mu.Lock() read,_ = m.read.Load().(readOnly) e,ok = read.m[key] if !ok && read.amended { delete(m.dirty,key) } m.mu.Unlock() } if ok { e.delete() } } func (e *entry) delete() (hadValue bool) { for { p := atomic.LoadPointer(&e.p) // 已标记为删除 if p == nil || p == expunged { return false } // 原子操作,e.p标记为nil if atomic.CompareAndSwapPointer(&e.p,nil) { return true } } }
六、疑问
1、已经删除的key,再次Load的时候,会怎么样?
func (e *entry) load() (value interface{},ok bool) {
p := atomic.LoadPointer(&e.p)
if p == nil || p == expunged {
return nil,false
}
return *(*interface{})(p),true
}
在Map Load方法中调用e.load()时,load方法会识别该值是否已被删除
本文map结构描述部分参考:https://studygolang.com/articles/10511
Java 1.8 ConcurrentHashMap 源码注解部分:
https://github.com/jiankunking/backups/blob/master/ConcurrentHashMap.java
个人微信公众号:
作者:jiankunking 出处:http://blog.csdn.net/jiankunking