Golang 路由匹配浅析[1]

前端之家收集整理的这篇文章主要介绍了Golang 路由匹配浅析[1]前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。

前言

在本文中以及下篇文章中,我们会研习Golang 的源码来探究Golang 是如何实现HTTP URL 匹配的,并对比 mux的实现。
本人水平有限,如有疏漏和不正确的地方,还请各位不吝赐教,多谢!

Golang 源码基于1.9.2

正文

我们有这样一个HTTP 服务器程序:

func main() {
    http.HandleFunc("/bar",func(w http.ResponseWriter,r *http.Request) {
        fmt.Fprintln(w,"Hello")
    })

    http.HandleFunc("/foo","World")
    })

    http.ListenAndServe(":8080",nil)
}

我们启动这样一个程序,并在浏览器输入 http://localhost:8080/bar,会看到页面打印出Hello,当我们将URL 换成 http://localhost:8080/foo时候,页面会打印出World。正是HTTP server 根据/bar/foo找到了相应的handler来server 这个request。我们跟随Golang 的源码来探究这个匹配的过程。

注册

跟随几步代码进去,会发现Golang 定义了这样一个结构

type ServeMux struct {
    mu    sync.RWMutex
    m     map[string]muxEntry
    hosts bool // whether any patterns contain hostnames
}

muxEntry是这样定义的

type muxEntry struct {
    explicit bool
    h        Handler
    pattern  string
}

看到这里,我们可以大致猜到m这个结构是URL 匹配的关键。它以URL Path作为key,而包含相应的Handler的muxEntry 作为Value。这样,当收到一个HTTP 请求时候,将URL Path 解析出来后,只要在m 中找到对应的handler就可以server 这个request 了。下面我们具体看下handler 的注册过程

// Handle registers the handler for the given pattern.
// If a handler already exists for pattern,Handle panics.
func (mux *ServeMux) Handle(pattern string,handler Handler) {
    mux.mu.Lock()
    defer mux.mu.Unlock()

    if pattern == "" {
        panic("http: invalid pattern " + pattern)
    }
    if handler == nil {
        panic("http: nil handler")
    }
    if mux.m[pattern].explicit {
        panic("http: multiple registrations for " + pattern)
    }

    if mux.m == nil {
        mux.m = make(map[string]muxEntry)
    }
    mux.m[pattern] = muxEntry{explicit: true,h: handler,pattern: pattern}

    if pattern[0] != '/' {
        mux.hosts = true
    }

    // Helpful behavior:
    // If pattern is /tree/,insert an implicit permanent redirect for /tree.
    // It can be overridden by an explicit registration.
    n := len(pattern)
    if n > 0 && pattern[n-1] == '/' && !mux.m[pattern[0:n-1]].explicit {
        // If pattern contains a host name,strip it and use remaining
        // path for redirect.
        path := pattern
        if pattern[0] != '/' {
            // In pattern,at least the last character is a '/',so
            // strings.Index can't be -1.
            path = pattern[strings.Index(pattern,"/"):]
        }
        url := &url.URL{Path: path}
        mux.m[pattern[0:n-1]] = muxEntry{h: RedirectHandler(url.String(),StatusMovedPermanently),pattern: pattern}
    }
}

Helpful behavior前面的代码显而易见,如果这个pattern 没有注册,会把handler 注册到这个pattern 上面。而 Helpful behavior 后面的代码会做这样的事情:假如我注册/bar/这样一个pattern,mux 会默认帮我注册/bar这个pattern,而/bar的handler会将/bar的请求redirect到/bar/。我们修改一下我们的main 函数

func main() {
    http.HandleFunc("/bar/",nil)
}

当我们在浏览器输入http://localhost:8080/bar时,会看到浏览器的URL变成了http://localhost:8080/bar/而且页面打印出了Hello。实际上,这是两个http请求:

Request URL: http://127.0.0.1:8080/bar
Request Method: GET
Status Code: 301 Moved Permanently
Remote Address: 127.0.0.1:8080
Request URL: http://localhost:8080/bar/
Request Method: GET
Status Code: 200 OK (from disk cache)
Remote Address: [::1]:8080

这正是server 对/bar做了redirect请求。
注册一个handler 到一个pattern看起来比较简单,那么Golang 的HTTP server 是如何serve 一个HTTP request 的呢?

匹配

我们都知道HTTP 协议是基于TCP 实现的,我们先来看一个TCP echo 服务器

func main() {

    fmt.Println("Launching server...")

    // listen on all interfaces
    ln,_ := net.Listen("tcp",":8081")

    for {
        // accept connection on port
        conn,_ := ln.Accept()

        // will listen for message to process ending in newline (\n)
        message,_ := bufio.NewReader(conn).ReadString('\n')
        // output message received
        fmt.Print("Message Received:",string(message))
        // sample process for string received
        newmessage := strings.ToUpper(message)
        // send new string back to client
        conn.Write([]byte(newmessage + "\n"))
    }
}

Golang 里面的net.Listen 封装了socket()bind()的过程,拿到一个listener之后,通过调用Accept()函数阻塞等待新的连接,每次Accept()函数返回时候,会得到一个TCP 连接。
Golang 里面的HTTP 服务也是这么做的:

func (srv *Server) Serve(l net.Listener) error {
    defer l.Close()
    if fn := testHookServerServe; fn != nil {
        fn(srv,l)
    }
    var tempDelay time.Duration // how long to sleep on accept failure

    if err := srv.setupHTTP2_Serve(); err != nil {
        return err
    }

    srv.trackListener(l,true)
    defer srv.trackListener(l,false)

    baseCtx := context.Background() // base is always background,per Issue 16220
    ctx := context.WithValue(baseCtx,ServerContextKey,srv)
    for {
        rw,e := l.Accept()
        if e != nil {
            select {
            case <-srv.getDoneChan():
                return ErrServerClosed
            default:
            }
            if ne,ok := e.(net.Error); ok && ne.Temporary() {
                if tempDelay == 0 {
                    tempDelay = 5 * time.Millisecond
                } else {
                    tempDelay *= 2
                }
                if max := 1 * time.Second; tempDelay > max {
                    tempDelay = max
                }
                srv.logf("http: Accept error: %v; retrying in %v",e,tempDelay)
                time.Sleep(tempDelay)
                continue
            }
            return e
        }
        tempDelay = 0
        c := srv.newConn(rw)
        c.setState(c.rwc,StateNew) // before Serve can return
        go c.serve(ctx)
    }
}

从这也可以看到,对于每一个HTTP 请求,服务端都会起一个goroutine 来serve.
跟随者源码一路追溯下去,发现调用了这样一个函数

// parseRequestLine parses "GET /foo HTTP/1.1" into its three parts.
func parseRequestLine(line string) (method,requestURI,proto string,ok bool) {
    s1 := strings.Index(line," ")
    s2 := strings.Index(line[s1+1:]," ")
    if s1 < 0 || s2 < 0 {
        return
    }
    s2 += s1 + 1
    return line[:s1],line[s1+1 : s2],line[s2+1:],true
}

对连接发送的内容进行HTTP 协议解析,得到 HTTP 方法和URI。我们略过其他协议解析和验证的部分,直接看serve request 的函数

serverHandler{c.server}.ServeHTTP(w,w.req)

func (sh serverHandler) ServeHTTP(rw ResponseWriter,req *Request) {
    handler := sh.srv.Handler
    if handler == nil {
        handler = DefaultServeMux
    }
    if req.RequestURI == "*" && req.Method == "OPTIONS" {
        handler = globalOptionsHandler{}
    }
    handler.ServeHTTP(rw,req)
}

我们看到当handlernil时候,会使用package 的默认handlerDefaultServeMux。再回到我们的main.go:

http.ListenAndServe(":8080",nil)

我们在监听服务的时候,传入的handler 确实是nil,所以使用了DefaultServeMux,而当我们调用http.HandleFunc时,正是向DefaultServeMux 注册了pattern 和相应的handler。DefaultServeMuxServeHTTP方法如下:

// ServeHTTP dispatches the request to the handler whose
// pattern most closely matches the request URL.
func (mux *ServeMux) ServeHTTP(w ResponseWriter,r *Request) {
    if r.RequestURI == "*" {
        if r.ProtoAtLeast(1,1) {
            w.Header().Set("Connection","close")
        }
        w.WriteHeader(StatusBadRequest)
        return
    }
    h,_ := mux.Handler(r)
    h.ServeHTTP(w,r)
}

mux.Handler(r)方法通过request 找到对应的handler:

// handler is the main implementation of Handler.
// The path is known to be in canonical form,except for CONNECT methods.
func (mux *ServeMux) handler(host,path string) (h Handler,pattern string) {
    mux.mu.RLock()
    defer mux.mu.RUnlock()

    // Host-specific pattern takes precedence over generic ones
    if mux.hosts {
        h,pattern = mux.match(host + path)
    }
    if h == nil {
        h,pattern = mux.match(path)
    }
    if h == nil {
        h,pattern = NotFoundHandler(),""
    }
    return
}

// Find a handler on a handler map given a path string.
// Most-specific (longest) pattern wins.
func (mux *ServeMux) match(path string) (h Handler,pattern string) {
    // Check for exact match first.
    v,ok := mux.m[path]
    if ok {
        return v.h,v.pattern
    }

    // Check for longest valid match.
    var n = 0
    for k,v := range mux.m {
        if !pathMatch(k,path) {
            continue
        }
        if h == nil || len(k) > n {
            n = len(k)
            h = v.h
            pattern = v.pattern
        }
    }
    return
}

// Does path match pattern?
func pathMatch(pattern,path string) bool {
    if len(pattern) == 0 {
        // should not happen
        return false
    }
    n := len(pattern)
    if pattern[n-1] != '/' {
        return pattern == path
    }
    return len(path) >= n && path[0:n] == pattern
}

match 函数中首先检查精确匹配,如果匹配到,直接返回相应的handler。如果没有匹配,遍历所有注册path,进行pathMatch 检查,满足pathMatch的最长的path胜出。举例说明,main 函数如下:

func main() {
    http.HandleFunc("/bar/","Hello")
    })

    http.HandleFunc("/bar/bbb/","bbb")
    })

    http.HandleFunc("/foo",nil)
}

此时在浏览器中输入http://localhost:8080/foo/aaa,会返回404 page not found ,而输入http://localhost:8080/bar/aaa,会返回Hello。输入http://localhost:8080/bar/bbb/ccc时,/bar//bar/bbb/都会被匹配到,但是/bar/bbb/这个pattern 更长,浏览器会打印出bbb

总结

至此,我们浅析了Golang的路由匹配过程,注册过程将pattern 和相应handler 注册到一个map中,匹配时先检查是否有pattern 和path 完全匹配,如果没有,再检查最长匹配。
整个过程看起来比较简单,直接,但是不能支持正则的路由匹配。
下一篇文章中,将分析mux的源码,学习它的路由匹配方式。

猜你在找的Go相关文章