【数据结构】文件压缩项目

前端之家收集整理的这篇文章主要介绍了【数据结构】文件压缩项目前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。

项目名称文件压缩

开发环境:vs2010

运用到的数据结构:

1、heap堆

2、huffmantree哈夫曼树

3、Huffmancode哈夫曼编码

4、面向对象C++编程语言

思路:

1、利用小堆建立哈弗曼树

2、利用哈弗曼树产生哈夫曼编码

3、利用哈夫曼编码对文件进行压缩,产生压缩文件**.compress文件,以及**.config配置文件方便解码

4、利用配置文件获取文件中每个字符出现的次数

5、利用配置文件用小堆再次建立哈弗曼树

6、利用配置文件建立的哈弗曼树进行解码生成解压后的文件**.uncompress

建立大小堆博文连接在下面

http://blog.csdn.net/shangguan_1234/article/details/52791719

堆结构的二叉树存储是
最大堆:每个父节点的都大于孩子节点。
最小堆:每个父节点的都小于孩子节点。

这里举小堆的例子

将每个子孩子与父节点的值进行比较,如果比父节点小则父节点下移,较小的子孩子上移


#pragma once    
#include <vector>    
#include<assert.h>    
using namespace std;
// 小堆    
template<class T>
struct Less
{
	bool operator() (const T& l,const T& r)
	{
		return l < r;
	}
};
//大堆
template<class T>
struct Greater
{
	bool operator() (const T& l,const T& r)
	{
		return l > r;
	}
};

template<class T,class Compare = Less<T>>
class Heap
{
public:
	Heap()
	{}

	Heap(const T* a,size_t size)
	{
		for (size_t i = 0; i < size; ++i)
		{
			_infosays.push_back(a[i]);
		}

		// 建堆    
		for (int i = (_infosays.size() - 2) / 2; i >= 0; --i)
		{
			AdjustDown(i);
		}
	}

	void Push(const T& x)
	{
		_infosays.push_back(x);
		AdjustUp(_infosays.size() - 1);
	}

	void Pop()
	{
		assert(_infosays.size() > 0);
		swap(_infosays[0],_infosays[_infosays.size() - 1]);
		_infosays.pop_back();

		AdjustDown(0);
	}

	const T& Top()
	{
		//assert(_infosays.size() > 0);
		if (!Empty())
		{
			return _infosays[0];
		}
		
	}

	bool Empty()
	{
		return _infosays.empty();
	}

	int Size()
	{
		return _infosays.size();
	}

	void AdjustDown(int root)
	{
		size_t child = root * 2 + 1;

		Compare com;
		while (child < _infosays.size())
		{
			if (child + 1<_infosays.size() &&
				com(_infosays[child + 1],_infosays[child]))
			{
				++child;
			}


			if (com(_infosays[child],_infosays[root]))
			{
				swap(_infosays[child],_infosays[root]);
				root = child;
				child = 2 * root + 1;
			}
			else
			{
				break;
			}
		}
	}

	void AdjustUp(int child)
	{
		int parent = (child - 1) / 2;


		while (child > 0)
		{
			if (Compare()(_infosays[child],_infosays[parent]))
			{
				swap(_infosays[parent],_infosays[child]);
				child = parent;
				parent = (child - 1) / 2;
			}
			else
			{
				break;
			}
		}
	}

	void Print()
	{
		for (size_t i = 0; i < _infosays.size(); ++i)
		{
			cout << _infosays[i] << " ";
		}
		cout << endl;
	}

public:
	vector<T> _infosays;
};

利用堆建立哈夫曼树

Huffm an树,又称为最优二叉树,是加权路径长度最短的二叉树。
【贪心算法】是指在问题求解时,总是做出当前看起来最好的选择。也就是说贪心算法做出的不是整体最优的的选择,而是某种意义上的
局部最优解。贪心算法不是对所有的问题都能得到整体最优解。

使用贪心算法构建Huffman树


#pragma  once 
#include "Heap.h"    
#include<assert.h>    
using namespace std;
template<class T>
struct HuffmanTreeNode
{
	HuffmanTreeNode<T>* _left;
	HuffmanTreeNode<T>* _right;
	HuffmanTreeNode<T>* _parent;
	T _weight;
	HuffmanTreeNode(const T& x)
		:_weight(x),_left(NULL),_right(NULL),_parent(NULL)
	{}
};

template<class T>
class HuffmanTree
{
	typedef HuffmanTreeNode<T> Node;

public:

	HuffmanTree()
		:_root(NULL)
	{}

	~HuffmanTree()
	{
		Destory(_root);
	}

	template <class T>
	struct NodeCompare
	{
		bool operator()(Node *l,Node *r)
		{
			return l->_weight < r->_weight;
		}
	};
	void CreatTree(const T* a,size_t size,const T& invalid)
	{
		assert(a);
		Heap<Node*,NodeCompare<T>> minHeap;
		for (size_t i = 0; i < size; ++i)
		{
			if (a[i] != invalid)
			{
				Node* node = new Node(a[i]);
				minHeap.Push(node);
			}
		}

		while (minHeap.Size() > 1)
		{
			Node* left = minHeap.Top();
			minHeap.Pop();
			Node* right = minHeap.Top();
			minHeap.Pop();

			Node* parent = new Node(left->_weight + right->_weight);
			parent->_left = left;
			parent->_right = right;
			left->_parent = parent;
			right->_parent = parent;

			minHeap.Push(parent);
		}

		_root = minHeap.Top();
	}


	Node* GetRootNode()
	{
		return _root;
	}


	//void Destory(Node* root)
	//{
	//	if (root)
	//	{
	//		Destory(root->_left);
	//		Destory(root->_right);
	//		delete root;
	//		root = NULL;
	//	}
	//}
	void Destory(Node* root)
	{
		if (root==NULL)
		{
			return ;
		}
		if(root->_left==NULL&&root->_right==NULL)
		{
			delete root;
			root=NULL;
		}
		else
		{
			Destory(root->_left);
			Destory(root->_right);
		}
	}
private:
	HuffmanTreeNode<T>* _root;
};

利用哈弗曼树产生哈夫曼编码


代码实现

void _GenerateHuffmanCode(HuffmanTreeNode<CharInfo>* root)//创建哈夫曼编码
	{
		if (root == NULL)
		{
			return;
		}

		_GenerateHuffmanCode(root->_left);
		_GenerateHuffmanCode(root->_right);

		if (root->_left == NULL && root->_right == NULL)
		{
			HuffmanTreeNode<CharInfo>* cur = root;
			HuffmanTreeNode<CharInfo>* parent = cur->_parent;
			string& code = _infos[cur->_weight._ch]._code;

			while (parent)
			{
				if (parent->_left == cur)//往左走+0
				{
					code += '0';
				}
				else if (parent->_right == cur)//往右走+1
				{
					code += '1';
				}
				cur = parent;
				parent = cur->_parent;
			}
			//寻找编码从叶子节点开始。
			reverse(code.begin(),code.end());
		}
	}

	//递归实现哈夫曼编码
	void _GenerateHuffmanCode_R(HuffmanTreeNode<CharInfo>* root,string code)//创建哈夫曼编码
	{
		if(root==NULL)
			return;
		_GenerateHuffmanCode_R(root->_left,code+'0');
		_GenerateHuffmanCode_R(root->_right,code+'1');
		if(root->_left==NULL&&root->_right==NULL)
		{
			_infos[root->_weight._ch]._code=code;
		}
	}
利用哈夫曼编码对文件进行压缩,产生压缩文件**.compress文件,以及**.config配置文件方便解码


bool Compress(const char* filename)
	{
		//1.打开文件统计文件字符出现的次数    
		Longtype Charcount = 0;
		assert(filename);
		FILE* fOut = fopen(filename,"rb");//之前用“r”,结果出了一点问题
		//"rb"为以二进制方式读取文件,这里的b就是binary。"wb"为以二进制方式写入文件  
		assert(fOut);					//以二进制和文本打开方式区别在于:以文本打开方式会将\r\n
		//转换为\n,二进制这不会有这样的转换
		//char ch = fgetc(fOut);
		int ch = fgetc(fOut);
			while (ch != EOF)
		{
		_infos[(unsigned char)ch]._count++;
		ch = fgetc(fOut);
		Charcount++;
		}
		//2.生成对应的huffman编码    
		GenerateHuffmanCode();
		//3.文件压缩    
		string compressFile = filename;
		compressFile += ".compress";
		FILE* fwCompress = fopen(compressFile.c_str(),"wb");//以二进制写入
		assert(fwCompress);
		fseek(fOut,SEEK_SET);
		ch = fgetc(fOut);
		char inch = 0;
		int pos = 0;
		while (!feof(fOut))
		{
			string& code = _infos[(unsigned char)ch]._code;
			for (size_t i = 0; i < code.size(); ++i)
			{
				inch = inch << 1;
				if (code[i] == '1')
				{
					inch |= 1;
				}
				if (++pos == 8)//对于形成的长串字符编码的切割,每8个bit为一个字节,便于读取  
				{
					fputc(inch,fwCompress);
					inch = 0;
					pos = 0;
				}
			}
			ch = fgetc(fOut);
		}

		if (pos)//考虑到可能会有切割完,剩余的字符码不够填充8个bit位的情况  
		{
			inch = inch << (8 - pos);
			fputc(inch,fwCompress);
		}
		//4.配置文件,方便后续的解压缩;  
		string configFile = filename;
		configFile += ".config";
		FILE *fconfig = fopen(configFile.c_str(),"wb");
		assert(fconfig);
		string infoStr;
		//char CountStr[128];
		char CountStr[128];
		_itoa(Charcount >> 32,CountStr,10);
		fputs(CountStr,fconfig);
		fputc('\n',fconfig);
		_itoa(Charcount & 0xffffffff,10);
		//_itoa(Charcount & -1,fconfig);

		CharInfo invalid;
		for (int i = 0; i < 256; i++)
		{
			if (_infos[i] != invalid)
			{
				/*	fputc(_infos[i]._ch,fconfig);
				fputc(',',fconfig);
				fputc(_infos[i]._count + '0',fconfig);
				fputc('\n',fconfig);*/
				infoStr=_infos[i]._ch;
				infoStr+=',';
				_itoa(_infos[i]._count,10);
			    infoStr+=CountStr;
				infoStr+='\n';
				fputs(infoStr.c_str(),fconfig);
			}
		}

		fclose(fOut);
		fclose(fwCompress);
		fclose(fconfig);

		return true;
	}

利用配置文件获取文件中每个字符出现的次数

string configfile = filename;
		configfile += ".config";
		FILE* outConfig = fopen(configfile.c_str(),"rb");
		assert(outConfig);
		char ch=0;
		/*char ch;*/
		Longtype Charcount = 0;
		string line = ReadLine(outConfig);
		Charcount = atoi(line.c_str());
		Charcount <<= 32;
		line.clear();
		line = ReadLine(outConfig);
		Charcount += atoi(line.c_str());
		line.clear();

		while (feof(outConfig))
			//feof()遇到文件结束,函数值为非零值,否则为0。当把数据以二进制的形式进行存放时,可能会有-1值的出现,
			//所以此时无法利用-1值(EOF)做为eof()函数判断二进制文件结束的标志。  
		{
			line = ReadLine(outConfig);
			if (!line.empty())
			{
				ch = line[0];
				_infos[(unsigned char)ch]._count += atoi(line.substr(2).c_str());
				//_infos[(unsigned char)ch]._count += atoi(line.c_str());
				line.clear();
			}
			else
			{
				line = '\n';
			}
		}


利用配置文件用小堆再次建立哈弗曼树

利用配置文件建立的哈弗曼树进行解码生成解压后的文件**.uncompress

HuffmanTree<CharInfo> ht;
		CharInfo invalid(0);
		ht.CreatTree(_infos,256,invalid);//重新建树
		HuffmanTreeNode<CharInfo>* root = ht.GetRootNode();
		string  UnCompressFile = filename;
		UnCompressFile += ".uncompress";
		FILE* fIn = fopen(UnCompressFile.c_str(),"wb");
		string CompressFile = filename;
		CompressFile += ".compress";
		FILE* fOut = fopen(CompressFile.c_str(),"rb");
		int pos = 8;
		HuffmanTreeNode<CharInfo>* cur = root;
		ch=fgetc(fOut);
		while ((unsigned char)ch != EOF)
		//while(1)
		{
			--pos;
			if ((unsigned char)ch &(1 << pos))
			{
				cur = cur->_right;
			}
			else
			{
				cur = cur->_left;
			}
			if (cur->_left == NULL && cur->_right == NULL)
			{
				fputc(cur->_weight._ch,fIn);
				cur = root;
				Charcount--;
				
			}
			if (pos == 0)
			{
				ch = fgetc(fOut);
				pos = 8;
			}
			if (Charcount==0)
			{
				break;
			}}

解压缩
//文件的解压缩 
	bool UnCompresss(const char* filename)
	{
		string configfile = filename;
		configfile += ".config";
		FILE* outConfig = fopen(configfile.c_str(),"rb");
		assert(outConfig);
		char ch=0;
		/*char ch;*/
		Longtype Charcount = 0;
		string line = ReadLine(outConfig);
		Charcount = atoi(line.c_str());
		Charcount <<= 32;
		line.clear();
		line = ReadLine(outConfig);
		Charcount += atoi(line.c_str());
		line.clear();

		while (feof(outConfig))
			//feof()遇到文件结束,函数值为非零值,否则为0。当把数据以二进制的形式进行存放时,可能会有-1值的出现,
			//所以此时无法利用-1值(EOF)做为eof()函数判断二进制文件结束的标志。  
		{
			line = ReadLine(outConfig);
			if (!line.empty())
			{
				ch = line[0];
				_infos[(unsigned char)ch]._count += atoi(line.substr(2).c_str());
				//_infos[(unsigned char)ch]._count += atoi(line.c_str());
				line.clear();
			}
			else
			{
				line = '\n';
			}
		}

		HuffmanTree<CharInfo> ht;
		CharInfo invalid(0);
		ht.CreatTree(_infos,fIn);
				cur = root;
				Charcount--;
				
			}
			if (pos == 0)
			{
				ch = fgetc(fOut);
				pos = 8;
			}
			if (Charcount==0)
			{
				break;
			}
		}

		
		fclose(fIn);
		fclose(fOut);
        fclose(outConfig);
		return true;
	}



文件压缩代码

FileCompress.h

#define _CRT_SECURE_NO_WARNINGS 1
#pragma once
#include"HuffmanTree.h"  
#include<iostream>
#include<algorithm>  
#include<windows.h>  
#include<string.h>  
using namespace std;
typedef long long Longtype;//为了扩大其范围,int型能处理的范围已经不能满足,所以定义Long Long型予以表示  

struct CharInfo
{
	unsigned char _ch;//这里必须为unsigned,否则会造成截断,所以从-128~127调至0~255.  
	Longtype _count;
	string _code;

	CharInfo(int count = 0)
		:_ch(0),_count(count),_code("")
	{}

	CharInfo operator+(CharInfo& file)//重载+
	{
		CharInfo tmp;
		tmp._count = _count + file._count;
		return tmp;
	}

	bool operator < (CharInfo& file) const//重载<
	{
		return _count < file._count;
	}

	bool operator != (const CharInfo& file) const//重载!=
	{
		return _count != file._count;
	}
};


template<class T>
class FileCompress
{
public:
	FileCompress()
	{
		for (int i = 0; i < 256; ++i)//初始化
		{
			_infos[i]._ch = i;
		}
	}
	bool Compress(const char* filename)
	{
		//1.打开文件统计文件字符出现的次数    
		Longtype Charcount = 0;
		assert(filename);
		FILE* fOut = fopen(filename,fconfig);
			}
		}

		fclose(fOut);
		fclose(fwCompress);
		fclose(fconfig);

		return true;
	}
	//文件的解压缩 
	bool UnCompresss(const char* filename)
	{
		string configfile = filename;
		configfile += ".config";
		FILE* outConfig = fopen(configfile.c_str(),fIn);
				cur = root;
				Charcount--;
				
			}
			if (pos == 0)
			{
				ch = fgetc(fOut);
				pos = 8;
			}
			if (Charcount==0)
			{
				break;
			}
		}

		
		fclose(fIn);
		fclose(fOut);
        fclose(outConfig);
		return true;
	}

protected:
	string ReadLine(FILE* fOut)
	{
		assert(fOut);
		char ch = fgetc(fOut);
		if (feof(fOut))
		{
			return 0;
		}
		string line;
		while (ch != '\n')
		{
			line += ch;
			ch = fgetc(fOut);

			if (feof(fOut))
				break;
		}
		return line;
	}
	void GenerateHuffmanCode()
	{
		HuffmanTree<CharInfo> hft;
		CharInfo invalid;

		hft.CreatTree(_infos,invalid);
		_GenerateHuffmanCode(hft.GetRootNode());
	}
protected:
	void _GenerateHuffmanCode(HuffmanTreeNode<CharInfo>* root)//创建哈夫曼编码
	{
		if (root == NULL)
		{
			return;
		}

		_GenerateHuffmanCode(root->_left);
		_GenerateHuffmanCode(root->_right);

		if (root->_left == NULL && root->_right == NULL)
		{
			HuffmanTreeNode<CharInfo>* cur = root;
			HuffmanTreeNode<CharInfo>* parent = cur->_parent;
			string& code = _infos[cur->_weight._ch]._code;

			while (parent)
			{
				if (parent->_left == cur)//往左走+0
				{
					code += '0';
				}
				else if (parent->_right == cur)//往右走+1
				{
					code += '1';
				}
				cur = parent;
				parent = cur->_parent;
			}
			//寻找编码从叶子节点开始。
			reverse(code.begin(),code+'1');
		if(root->_left==NULL&&root->_right==NULL)
		{
			_infos[root->_weight._ch]._code=code;
		}
	}
private:
	CharInfo _infos[256];
};

void TestFileCompress()
{
	cout<<"一次压缩"<<endl;
	FileCompress<CharInfo> fc;
	cout << "Input.txt文件压缩中...." << endl;
	cout << "压缩用时: ";
	int begin1 = GetTickCount();//记录开始时间
	fc.Compress("Input.txt");//  
	int end1 = GetTickCount();//  记录结束时间
	cout << end1 - begin1 << endl << endl;//压缩时间

	cout << "Input.txt文件解压中...." << endl;;
	cout << "解压用时: ";
	int begin2 = GetTickCount();
	fc.UnCompresss("Input.txt");
	int end2 = GetTickCount(); 
	cout << end2 - begin2 << endl << endl;//解压用时

	FileCompress<CharInfo> fc1;

	cout << "Input.BIG文件压缩中...." << endl;
	cout << "压缩用时: ";
	int begin3 = GetTickCount();
	fc1.Compress("Input.BIG");//  
	int end3 = GetTickCount();//  
	cout << end3 - begin3 << endl << endl;

	cout << "Input.BIG文件解压中...." << endl;
	cout << "解压用时: ";
	int begin4 = GetTickCount();
	fc1.UnCompresss("Input.BIG");
	int end4 = GetTickCount();  
	cout << (end4 - begin4 )<< endl;

	FileCompress<CharInfo> fc2;
	cout << "康熙字典.txt文件压缩中...." << endl;
	cout << "压缩用时: ";
	int begin5 = GetTickCount();//记录开始时间
	fc2.Compress("康熙字典.txt");//  
	int end5 = GetTickCount();//  记录结束时间
	cout << end5 - begin5 << endl << endl;//压缩时间

	cout << "康熙字典.txt文件解压中...." << endl;;
	cout << "解压用时: ";
	int begin6 = GetTickCount();
	fc2.UnCompresss("康熙字典.txt");
	int end6 = GetTickCount(); 
	cout << end6 - begin6 << endl << endl;//解压用时
}
void TestFileCompressAgain()//二次压缩
{
	cout<<"二次压缩"<<endl;
	FileCompress<CharInfo> fc;
	cout << "Input.txt.compress文件压缩中...." << endl;
	cout << "压缩用时: ";
	int begin1 = GetTickCount();//记录开始时间
	fc.Compress("Input.txt.compress");//  
	int end1 = GetTickCount();//  记录结束时间
	cout << end1 - begin1 << endl << endl;//压缩时间

	cout << "Input.txt.compress文件解压中...." << endl;;
	cout << "解压用时: ";
	int begin2 = GetTickCount();
	fc.UnCompresss("Input.txt.compress");
	int end2 = GetTickCount(); 
	cout << end2 - begin2 << endl << endl;//解压用时

	FileCompress<CharInfo> fc1;
	cout << "Input.BIG.compress文件压缩中...." << endl;
	cout << "压缩用时: ";
	int begin3 = GetTickCount();//记录开始时间
	fc1.Compress("Input.BIG.compress");//  
	int end3 = GetTickCount();//  记录结束时间
	cout << end3 - begin3 << endl << endl;//压缩时间

	cout << "Input.BIG.compress文件解压中...." << endl;;
	cout << "解压用时: ";
	int begin4 = GetTickCount();
	fc1.UnCompresss("Input.BIG.compress");
	int end4 = GetTickCount(); 
	cout << end4 - begin4 << endl << endl;//解压用时


	
}
void TestFileCompressThree()
{
	cout<<"三次压缩"<<endl;
	FileCompress<CharInfo> fc;
	cout << "Input.BIG.compress.compress文件压缩中...." << endl;
	cout << "压缩用时: ";
	int begin5 = GetTickCount();//记录开始时间
	fc.Compress("Input.BIG.compress.compress");//  
	int end5 = GetTickCount();//  记录结束时间
	cout << end5 - begin5 << endl << endl;//压缩时间

	cout << "Input.BIG.compress.compress文件解压中...." << endl;;
	cout << "解压用时: ";
	int begin6 = GetTickCount();
	fc.UnCompresss("Input.BIG.compress.compress");
	int end6 = GetTickCount(); 
	cout << end6 - begin6 << endl << endl;//解压用时
}

void TestFileCompressFour()
{
	cout<<"四次压缩"<<endl;
	FileCompress<CharInfo> fc;
	cout << "Input.BIG.compress.compress.compress文件压缩中...." << endl;
	cout << "压缩用时: ";
	int begin5 = GetTickCount();//记录开始时间
	fc.Compress("Input.BIG.compress.compress.compress");//  
	int end5 = GetTickCount();//  记录结束时间
	cout << end5 - begin5 << endl << endl;//压缩时间

	cout << "Input.BIG.compress.compress.compress文件解压中...." << endl;;
	cout << "解压用时: ";
	int begin6 = GetTickCount();
	fc.UnCompresss("Input.BIG.compress.compress.compress");
	int end6 = GetTickCount(); 
	cout << end6 - begin6 << endl << endl;//解压用时
}
void TestFileCompressFive()
{
	cout<<"五次压缩"<<endl;
	FileCompress<CharInfo> fc;
	cout << "Input.BIG.compress.compress.compress.compress文件压缩中...." << endl;
	cout << "压缩用时: ";
	int begin5 = GetTickCount();//记录开始时间
	fc.Compress("Input.BIG.compress.compress.compress.compress");//  
	int end5 = GetTickCount();//  记录结束时间
	cout << end5 - begin5 << endl << endl;//压缩时间

	cout << "Input.BIG.compress.compress.compress.compress文件解压中...." << endl;;
	cout << "解压用时: ";
	int begin6 = GetTickCount();
	fc.UnCompresss("Input.BIG.compress.compress.compress.compress");
	int end6 = GetTickCount(); 
	cout << end6 - begin6 << endl << endl;//解压用时
}
void TestFileCompressPhoto()
{
	cout<<"图片压缩"<<endl;
	FileCompress<CharInfo> fc;
	cout << "166.jpg文件压缩中...." << endl;
	cout << "压缩用时: ";
	int begin5 = GetTickCount();//记录开始时间
	fc.Compress("166.jpg");//  
	int end5 = GetTickCount();//  记录结束时间
	cout << end5 - begin5 << endl << endl;//压缩时间

	cout << "166.jpg文件解压中...." << endl;;
	cout << "解压用时: ";
	int begin6 = GetTickCount();
	fc.UnCompresss("166.jpg");
	int end6 = GetTickCount(); 
	cout << end6 - begin6 << endl << endl;//解压用时
	
}
void TestFileCompressVadio()
{
	cout<<"视频压缩"<<endl;
	FileCompress<CharInfo> fc;
	cout << "釜山行_hd.mp4文件压缩中...." << endl;
	cout << "压缩用时: ";
	int begin5 = GetTickCount();//记录开始时间
	fc.Compress("釜山行_hd.mp4");//  
	int end5 = GetTickCount();//  记录结束时间
	cout << end5 - begin5 << endl << endl;//压缩时间

	cout << "釜山行_hd.mp4文件解压中...." << endl;;
	cout << "解压用时: ";
	int begin6 = GetTickCount();
	fc.UnCompresss("釜山行_hd.mp4");
	int end6 = GetTickCount(); 
	cout << end6 - begin6 << endl << endl;//解压用时
}
main函数
#include "FileCompress.h"
using namespace std;
int main()
{

	TestFileCompress();
	TestFileCompressAgain();
	TestFileCompressThree();
	TestFileCompressFour();
	TestFileCompressFive();
	TestFileCompressPhoto();
	TestFileCompressVadio();
	system("pause");
	return 0;
}
压缩结果分析

1、多次压缩普通文件

时间分析





正确性分析

文件和解压完结果完全相同


大小分析

文件和解压完结果完全相同


由于文件太小倒置后面几次压缩大小未发生改变


2、解压图片文件及视频文件

时间分析

视频文件较大用时238354ms


图片正确性分析

文件和解压完结果完全相同


分析大小

文件和解压完结果完全相同

猜你在找的数据结构相关文章