现在我们开始研究载入的数据部分(importing data)
在正式开始前,我们先介绍一个存储了大量音乐媒体的网站http://musicbrainz.org,
这里的数据都是免费的,一个大型开放社区提供。
MusicBrainz每天都提供一个数据快照(snapshot)的sql文件,这些数据可以被导入Postgresql数据库中。
一、字段配置(schema)
schema.xml位于solr/conf/目录下,类似于数据表配置文件,
定义了加入索引的数据的数据类型,主要包括type、fields和其他的一些缺省设置。
1、先来看下type节点,这里面定义FieldType子节点,包括name,class,positionIncrementGap等一些参数。
< schema name = "example" version = "1.2" > < types > < fieldType name = "string" class = "solr.StrField" sortMissingLast = "true" omitNorms = "true" /> < fieldType name = "boolean" class = "solr.BoolField" sortMissingLast = "true" omitNorms = "true" /> < fieldtype name = "binary" class = "solr.BinaryField" /> < fieldType name = "int" class = "solr.TrieIntField" precisionStep = "0" omitNorms = "true" positionIncrementGap = "0" /> < fieldType name = "float" class = "solr.TrieFloatField" precisionStep = "0" omitNorms = "true" positionIncrementGap = "0" /> < fieldType name = "long" class = "solr.TrieLongField" precisionStep = "0" omitNorms = "true" positionIncrementGap = "0" /> < fieldType name = "double" class = "solr.TrieDoubleField" precisionStep = "0" omitNorms = "true" positionIncrementGap = "0" /> </ types > </ schema >
必要的时候fieldType还需要自己定义这个类型的数据在建立索引和进行查询的时候要使用的分析器analyzer,包括分词和过滤,如下:
< fieldType name = "text_ws" class = "solr.TextField" positionIncrementGap = "100" > < analyzer > < tokenizer class = "solr.WhitespaceTokenizerFactory" /> </ analyzer > </ fieldType > < fieldType name = "text" class = "solr.TextField" positionIncrementGap = "100" > < analyzer type = "index" > <!--这个分词包是空格分词,在向索引库添加text类型的索引时,Solr会首先用空格进行分词 然后把分词结果依次使用指定的过滤器进行过滤,最后剩下的结果,才会加入到索引库中以备查询。 注意:Solr的analysis包并没有带支持中文的包,需要自己添加中文分词器,google下。 --> < tokenizer class = "solr.WhitespaceTokenizerFactory" /> <!-- in this example,we will only use synonyms at query time < filter class = "solr.SynonymFilterFactory" synonyms = "index_synonyms.txt" ignoreCase = "true" expand = "false" /> --> <!-- Case insensitive stop word removal. add enablePositionIncrements = true in both the index and query analyzers to leave a 'gap' for more accurate phrase queries. --> < filter class = "solr.StopFilterFactory" ignoreCase = "true" words = "stopwords.txt" enablePositionIncrements = "true" /> < filter class = "solr.WordDelimiterFilterFactory" generateWordParts = "1" generateNumberParts = "1" catenateWords = "1" catenateNumbers = "1" catenateAll = "0" splitOnCaseChange = "1" /> < filter class = "solr.LowerCaseFilterFactory" /> < filter class = "solr.SnowballPorterFilterFactory" language = "English" protected = "protwords.txt" /> </ analyzer > < analyzer type = "query" > < tokenizer class = "solr.WhitespaceTokenizerFactory" /> < filter class = "solr.SynonymFilterFactory" synonyms = "synonyms.txt" ignoreCase = "true" expand = "true" /> < filter class = "solr.StopFilterFactory" ignoreCase = "true" words = "stopwords.txt" enablePositionIncrements = "true" /> < filter class = "solr.WordDelimiterFilterFactory" generateWordParts = "1" generateNumberParts = "1" catenateWords = "0" catenateNumbers = "0" catenateAll = "0" splitOnCaseChange = "1" /> < filter class = "solr.LowerCaseFilterFactory" /> < filter class = "solr.SnowballPorterFilterFactory" language = "English" protected = "protwords.txt" /> </ analyzer > </ fieldType >
2、再来看下fields节点内定义具体的字段(类似数据库的字段),含有以下属性:
- name:字段名
- type:之前定义过的各种FieldType
- indexed:是否被索引
- stored:是否被存储(如果不需要存储相应字段值,尽量设为false)
- multiValued:是否有多个值(对可能存在多值的字段尽量设置为true,避免建索引时抛出错误)
< fields > < field name = "id" type = "integer" indexed = "true" stored = "true" required = "true" /> < field name = "name" type = "text" indexed = "true" stored = "true" /> < field name = "summary" type = "text" indexed = "true" stored = "true" /> < field name = "author" type = "string" indexed = "true" stored = "true" /> < field name = "date" type = "date" indexed = "false" stored = "true" /> < field name = "content" type = "text" indexed = "true" stored = "false" /> < field name = "keywords" type = "keyword_text" indexed = "true" stored = "false" multiValued = "true" /> <!--拷贝字段--> < field name = "all" type = "text" indexed = "true" stored = "false" multiValued = "true" /> </ fields >
3、建议建立一个拷贝字段,将所有的 全文本 字段复制到一个字段中,以便进行统一的检索:
以下是拷贝设置:
< copyField source = "name" dest = "all" /> < copyField source = "summary" dest = "all" />
4、动态字段,没有具体名称的字段,用dynamicField字段
如:name为*_i,定义它的type为int,那么在使用这个字段的时候,任务以_i结果的字段都被认为符合这个定义。如name_i,school_i
< dynamicField name = "*_i" type = "int" indexed = "true" stored = "true" /> < dynamicField name = "*_s" type = "string" indexed = "true" stored = "true" /> < dynamicField name = "*_l" type = "long" indexed = "true" stored = "true" /> < dynamicField name = "*_t" type = "text" indexed = "true" stored = "true" /> < dynamicField name = "*_b" type = "boolean" indexed = "true" stored = "true" /> < dynamicField name = "*_f" type = "float" indexed = "true" stored = "true" /> < dynamicField name = "*_d" type = "double" indexed = "true" stored = "true" /> < dynamicField name = "*_dt" type = "date" indexed = "true" stored = "true" />
schema.xml文档注释中的信息:
1、为了改进性能,可以采取以下几种措施:
- 将所有只用于搜索的,而不需要作为结果的field(特别是一些比较大的field)的stored设置为false
- 将不需要被用于搜索的,而只是作为结果返回的field的indexed设置为false
- 删除所有不必要的copyField声明
- 为了索引字段的最小化和搜索的效率,将所有的 text fields的index都设置成field,然后使用copyField将他们都复制到一个总的 text field上,然后对他进行搜索。
- 为了最大化搜索效率,使用java编写的客户端与solr交互(使用流通信)
- 在服务器端运行JVM(省去网络通信),使用尽可能高的Log输出等级,减少日志量。
2、<schemaname="example"version="1.2">
- name:标识这个schema的名字
- version:现在版本是1.2
3、filedType
<fieldTypename="stringclass="solr.StrFieldsortMissingLast="trueomitNorms="true"/>
positionIncrementGap:可选属性,定义在同一个文档中此类型数据的空白间隔,避免短语匹配错误。
name: 字段类型名
class: java类名
indexed: 缺省true。 说明这个数据应被搜索和排序,如果数据没有indexed,则stored应是true。
stored: 缺省true。说明这个字段被包含在搜索结果中是合适的。如果数据没有stored,则indexed应是true。
sortMissingLast: 指没有该指定字段数据的document排在有该指定字段数据的document的后面
sortMissingFirst: 指没有该指定字段数据的document排在有该指定字段数据的document的前面
omitNorms: 字段的长度不影响得分和在索引时不做boost时,设置它为true。一般文本字段不设置为true。
termVectors: 如果字段被用来做more like this 和highlight的特性时应设置为true。
compressed: 字段是压缩的。这可能导致索引和搜索变慢,但会减少存储空间,只有StrField和TextField是可以压缩,这通常适合字段的长度超过200个字符。
multiValued: 字段多于一个值的时候,可设置为true。
positionIncrementGap: 和multiValued一起使用,设置多个值之间的虚拟空白的数量
StrField类型不被分析,而是被逐字地索引/存储。
StrField和TextField都有一个可选的属性“compressThreshold”,保证压缩到不小于一个大小(单位:char)
fieldTypename="text="solr.TextFieldpositionIncrementGap="100">
solr.TextField 允许用户通过分析器来定制索引和查询,分析器包括 一个分词器(tokenizer)和多个过滤器(filter)
tokenizer="solr.WhitespaceTokenizerFactory 空格分词,精确匹配。
filter="solr.WordDelimiterFilterFactorygenerateWordParts="1generateNumberPartscatenateWordscatenateNumberscatenateAll="0splitOnCaseChange="1 在分词和匹配时,考虑 "-"连字符,字母数字的界限,非字母数字字符,这样 "wifi"或"wi fi"都能匹配"Wi-Fi"。
="solr.SynonymFilterFactorysynonyms="synonyms.txtignoreCaseexpand 同义词
="solr.StopFilterFactorywords="stopwords.txtenablePositionIncrements 在禁用字(stopword)删除后,在短语间增加间隔
stopword:即在建立索引过程中(建立索引和搜索)被忽略的词,比如is this等常用词。在conf/stopwords.txt维护。
4、fields
field="idtypeindexedstoredrequired"/>
- name:标识而已。
- type:先前定义的类型。
- indexed:是否被用来建立索引(关系到搜索和排序)
- stored:是否储存
- compressed:[false],是否使用gzip压缩(只有TextField和StrField可以压缩)
- mutiValued:是否包含多个值
- omitNorms:是否忽略掉Norm,可以节省内存空间,只有全文本field和need an index-time boost的field需要norm。(具体没看懂,注释里有矛盾)
- termVectors:[false],当设置true,会存储 term vector。当使用MoreLikeThis,用来作为相似词的field应该存储起来。
- termPositions:存储 term vector中的地址信息,会消耗存储开销。
- termOffsets:存储 term vector 的偏移量,会消耗存储开销。
- default:如果没有属性需要修改,就可以用这个标识下。
="falsemultiValued 包罗万象(有点夸张)的field,包含所有可搜索的text fields,通过copyField实现。
copyFieldsource="catdest="text"/>