mapred-site.xml里面配置运行日志的输出目录

前端之家收集整理的这篇文章主要介绍了mapred-site.xml里面配置运行日志的输出目录前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。

用hadoop也算有一段时间了,一直没有注意过hadoop运行过程中,产生的数据日志,比如说System打印的日志,或者是log4j,slf4j等记录的日志,存放在哪里,日志信息的重要性,在这里散仙就不用多说了,调试任何程序基本上都得需要分析日志。

hadoop的日志主要是MapReduce程序,运行过程中,产生的一些数据日志,除了系统的日志外,还包含一些我们自己在测试时候,或者线上环境输出的日志,这部分日志通常会被放在userlogs这个文件夹下面,我们可以在mapred-site.xml里面配置运行日志的输出目录,散仙测试文件内容如下:

Xml代码
  1. <?xmlversion="1.0"?>
  2. <?xml-stylesheettype="text/xsl"href="configuration.xsl"?>
  3. <!--Putsite-specificpropertyoverridesinthisfile.-->
  4. <configuration>
  5. <!--jobtracker的master地址-->
  6. <property>
  7. <name>mapred.job.tracker</name>
  8. <value>192.168.75.130:9001</value>
  9. </property>
  10. <property>
  11. <!--hadoop的日志输出指定目录-->
  12. <name>mapred.local.dir</name>
  13. <value>/root/hadoop1.2/mylogs</value>
  14. </property>
  15. </configuration>
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<!-- Put site-specific property overrides in this file. -->

<configuration>
<!-- jobtracker的master地址-->
<property> 
<name>mapred.job.tracker</name> 
<value>192.168.75.130:9001</value> 
</property>
<property>
<!-- hadoop的日志输出指定目录-->
<name>mapred.local.dir</name>
<value>/root/hadoop1.2/mylogs</value>
</property>
</configuration>



配置好,日志目录后,我们就可以把这个配置文件,分发到各个节点上,然后启动hadoop。
下面我们看来下在eclipse环境中如何调试,散仙在setup,map和reduce方法中,分别使用System打印了一些数据,当我们使用local方式跑MR程序时候,日志并不会被记录下来,而是直接会在控制台打印,散仙的测试代码如下:

Java代码
  1. packagecom.qin.testdistributed;
  2. importjava.io.File;
  3. importjava.io.FileReader;
  4. importjava.io.IOException;
  5. importjava.net.URI;
  6. importjava.util.Scanner;
  7. importorg.apache.hadoop.conf.Configuration;
  8. importorg.apache.hadoop.filecache.DistributedCache;
  9. importorg.apache.hadoop.fs.FSDataInputStream;
  10. importorg.apache.hadoop.fs.FileSystem;
  11. importorg.apache.hadoop.fs.Path;
  12. importorg.apache.hadoop.io.IntWritable;
  13. importorg.apache.hadoop.io.LongWritable;
  14. importorg.apache.hadoop.io.Text;
  15. importorg.apache.hadoop.mapred.JobConf;
  16. importorg.apache.hadoop.mapreduce.Job;
  17. importorg.apache.hadoop.mapreduce.Mapper;
  18. importorg.apache.hadoop.mapreduce.Reducer;
  19. importorg.apache.hadoop.mapreduce.lib.db.DBConfiguration;
  20. importorg.apache.hadoop.mapreduce.lib.input.FileInputFormat;
  21. importorg.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
  22. importorg.apache.log4j.pattern.LogEvent;
  23. importorg.slf4j.Logger;
  24. importorg.slf4j.LoggerFactory;
  25. importcom.qin.operadb.WriteMapDB;
  26. /**
  27. *测试hadoop的全局共享文件
  28. *使用DistributedCached
  29. *
  30. *大数据技术交流群:37693216
  31. *@authorqindongliang
  32. *
  33. ****/
  34. publicclassTestDistributed{
  35. privatestaticLoggerlogger=LoggerFactory.getLogger(TestDistributed.class);
  36. privatestaticclassFileMapperextendsMapper<LongWritable,Text,IntWritable>{
  37. Pathpath[]=null;
  38. /**
  39. *Map函数调用
  40. *
  41. **/
  42. @Override
  43. protectedvoidsetup(Contextcontext)
  44. throwsIOException,InterruptedException{
  45. logger.info("开始启动setup了哈哈哈哈");
  46. //System.out.println("运行了.........");
  47. Configurationconf=context.getConfiguration();
  48. path=DistributedCache.getLocalCacheFiles(conf);
  49. System.out.println("获取的路径是:"+path[0].toString());
  50. //FileSystemfs=FileSystem.get(conf);
  51. FileSystemfsopen=FileSystem.getLocal(conf);
  52. //FSDataInputStreamin=fsopen.open(path[0]);
  53. //System.out.println(in.readLine());
  54. //for(PathtmpRefPath:path){
  55. //if(tmpRefPath.toString().indexOf("ref.png")!=-1){
  56. //in=reffs.open(tmpRefPath);
  57. //break;
  58. //}
  59. //}
  60. //FileReaderreader=newFileReader("file://"+path[0].toString());
  61. //Filef=newFile("file://"+path[0].toString());
  62. //FSDataInputStreamin=fs.open(newPath(path[0].toString()));
  63. //Scannerscan=newScanner(in);
  64. //while(scan.hasNext()){
  65. //System.out.println(Thread.currentThread().getName()+"扫描的内容:"+scan.next());
  66. //}
  67. //scan.close();
  68. //
  69. //System.out.println("size:"+path.length);
  70. }
  71. @Override
  72. protectedvoidmap(LongWritablekey,Textvalue,Contextcontext)
  73. throwsIOException,InterruptedException{
  74. //System.out.println("mapaaa");
  75. //logger.info("Map里的任务");
  76. System.out.println("map里输出了");
  77. //logger.info();
  78. context.write(newText(""),newIntWritable(0));
  79. }
  80. @Override
  81. protectedvoidcleanup(Contextcontext)
  82. throwsIOException,InterruptedException{
  83. logger.info("清空任务了。。。。。。");
  84. }
  85. }
  86. privatestaticclassFileReduceextendsReducer<Object,Object,Object>{
  87. @Override
  88. protectedvoidreduce(Objectarg0,Iterable<Object>arg1,
  89. Contextarg2)throwsIOException,InterruptedException{
  90. System.out.println("我是reduce里面的东西");
  91. }
  92. }
  93. publicstaticvoidmain(String[]args)throwsException{
  94. JobConfconf=newJobConf(TestDistributed.class);
  95. //conf.set("mapred.local.dir","/root/hadoop");
  96. //Configurationconf=newConfiguration();
  97. //conf.set("mapred.job.tracker","192.168.75.130:9001");
  98. //读取person中的数据字段
  99. //conf.setJar("tt.jar");
  100. //注意这行代码放在最前面,进行初始化,否则会报
  101. StringinputPath="hdfs://192.168.75.130:9000/root/input";
  102. StringoutputPath="hdfs://192.168.75.130:9000/root/outputsort";
  103. Jobjob=newJob(conf,"a");
  104. DistributedCache.addCacheFile(newURI("hdfs://192.168.75.130:9000/root/input/f1.txt"),job.getConfiguration());
  105. job.setJarByClass(TestDistributed.class);
  106. System.out.println("运行模式:"+conf.get("mapred.job.tracker"));
  107. /**设置输出表的的信息第一个参数是job任务,第二个参数是表名,第三个参数字段项**/
  108. FileSystemfs=FileSystem.get(job.getConfiguration());
  109. Pathpout=newPath(outputPath);
  110. if(fs.exists(pout)){
  111. fs.delete(pout,true);
  112. System.out.println("存在此路径,已经删除......");
  113. }
  114. /**设置Map类**/
  115. //job.setOutputKeyClass(Text.class);
  116. //job.setOutputKeyClass(IntWritable.class);
  117. job.setMapOutputKeyClass(Text.class);
  118. job.setMapOutputValueClass(IntWritable.class);
  119. job.setMapperClass(FileMapper.class);
  120. job.setReducerClass(FileReduce.class);
  121. FileInputFormat.setInputPaths(job,newPath(inputPath));//输入路径
  122. FileOutputFormat.setOutputPath(job,newPath(outputPath));//输出路径
  123. System.exit(job.waitForCompletion(true)?0:1);
  124. }
  125. }
package com.qin.testdistributed;

import java.io.File;
import java.io.FileReader;
import java.io.IOException;
import java.net.URI;
import java.util.Scanner;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.filecache.DistributedCache;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.db.DBConfiguration;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.log4j.pattern.LogEvent;
 
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import com.qin.operadb.WriteMapDB;
 

/**
 * 测试hadoop的全局共享文件
 * 使用DistributedCached
 * 
 * 大数据技术交流群: 37693216
 * @author qindongliang
 * 
 * ***/
public class TestDistributed {
	
	
	private static Logger logger=LoggerFactory.getLogger(TestDistributed.class);
	
	
	
	
	
	private static class FileMapper extends Mapper<LongWritable,IntWritable>{
		
	     	Path path[]=null;
	     	
		/**
		 * Map函数调用
		 * 
		 * */
		@Override
		protected void setup(Context context)
				throws IOException,InterruptedException {
		  logger.info("开始启动setup了哈哈哈哈");
		    // System.out.println("运行了.........");
		  Configuration conf=context.getConfiguration();
		   path=DistributedCache.getLocalCacheFiles(conf);
	       System.out.println("获取的路径是:  "+path[0].toString());
	     //  FileSystem fs = FileSystem.get(conf);
	       FileSystem fsopen= FileSystem.getLocal(conf);
	      // FSDataInputStream in = fsopen.open(path[0]);
	      // System.out.println(in.readLine());
//	       for(Path tmpRefPath : path) {
//	           if(tmpRefPath.toString().indexOf("ref.png") != -1) {
//	               in = reffs.open(tmpRefPath);
//	               break;
//	           }
//	       }
	       
     // FileReader reader=new FileReader("file://"+path[0].toString());
//      File f=new File("file://"+path[0].toString());
      // FSDataInputStream in=fs.open(new Path(path[0].toString()));
//	     Scanner scan=new Scanner(in);
//	       while(scan.hasNext()){
//	    	   System.out.println(Thread.currentThread().getName()+"扫描的内容:  "+scan.next());
//	       }
//	       scan.close();
//		
		// System.out.println("size: "+path.length);
			
			
		}
		
		
		@Override
		protected void map(LongWritable key,Text value,Context context)
				throws IOException,InterruptedException {
		 
		//	System.out.println("map    aaa");
			//logger.info("Map里的任务");
			System.out.println("map里输出了");
		//	logger.info();
			context.write(new Text(""),new IntWritable(0));

		
		}
 
		
		 @Override
		protected void cleanup(Context context)
				throws IOException,InterruptedException {
		
			 
			 logger.info("清空任务了。。。。。。");
		}
		
	}
	
	
	private static class  FileReduce extends Reducer<Object,Object>{
		
		
		@Override
		protected void reduce(Object arg0,Iterable<Object> arg1,Context arg2)throws IOException,InterruptedException {
			 
			
			System.out.println("我是reduce里面的东西");
		}
	}
	
	
	
	public static void main(String[] args)throws Exception {
		
		
		JobConf conf=new JobConf(TestDistributed.class);
		//conf.set("mapred.local.dir","/root/hadoop");
		 //Configuration conf=new Configuration();
		
	    // conf.set("mapred.job.tracker","192.168.75.130:9001");
		//读取person中的数据字段
	  	   //conf.setJar("tt.jar");
		 
		//注意这行代码放在最前面,进行初始化,否则会报
		 String inputPath="hdfs://192.168.75.130:9000/root/input";	    
		 String outputPath="hdfs://192.168.75.130:9000/root/outputsort";
		 
		Job job=new Job(conf,"a");
		DistributedCache.addCacheFile(new URI("hdfs://192.168.75.130:9000/root/input/f1.txt"),job.getConfiguration());
		job.setJarByClass(TestDistributed.class);
		System.out.println("运行模式:  "+conf.get("mapred.job.tracker"));
		/**设置输出表的的信息  第一个参数是job任务,第二个参数是表名,第三个参数字段项**/
	   FileSystem fs=FileSystem.get(job.getConfiguration());
		
		  Path pout=new Path(outputPath);
		  if(fs.exists(pout)){
			  fs.delete(pout,true);
			  System.out.println("存在此路径,已经删除......");
		  } 
		 /**设置Map类**/
		// job.setOutputKeyClass(Text.class);
		 //job.setOutputKeyClass(IntWritable.class);
		  job.setMapOutputKeyClass(Text.class);
		  job.setMapOutputValueClass(IntWritable.class);
		 job.setMapperClass(FileMapper.class);
	     job.setReducerClass(FileReduce.class);
		 FileInputFormat.setInputPaths(job,new Path(inputPath));  //输入路径
         FileOutputFormat.setOutputPath(job,new Path(outputPath));//输出路径  
		
		System.exit(job.waitForCompletion(true) ? 0 : 1);  
		
		
		
	}
	
	
	

}


Local模式下输出如下:

Java代码
  1. 运行模式:local
  2. 存在此路径,已经删除......
  3. WARN-NativeCodeLoader.<clinit>(52)|Unabletoloadnative-hadooplibraryforyourplatform...usingbuiltin-javaclasseswhereapplicable
  4. WARN-JobClient.copyAndConfigureFiles(746)|UseGenericOptionsParserforparsingthearguments.ApplicationsshouldimplementToolforthesame.
  5. WARN-JobClient.copyAndConfigureFiles(870)|Nojobjarfileset.Userclassesmaynotbefound.SeeJobConf(Class)orJobConf#setJar(String).
  6. INFO-FileInputFormat.listStatus(237)|Totalinputpathstoprocess:1
  7. WARN-LoadSnappy.<clinit>(46)|Snappynativelibrarynotloaded
  8. INFO-TrackerDistributedCacheManager.downloadCacheObject(423)|Creatingf1.txtin/root/hadoop1.2/hadooptmp/mapred/local/archive/9070031930820799196_1788685676_88844454/192.168.75.130/root/input-work-186410214545932656withrwxr-xr-x
  9. INFO-TrackerDistributedCacheManager.downloadCacheObject(463)|Cachedhdfs://192.168.75.130:9000/root/input/f1.txtas/root/hadoop1.2/hadooptmp/mapred/local/archive/9070031930820799196_1788685676_88844454/192.168.75.130/root/input/f1.txt
  10. INFO-TrackerDistributedCacheManager.localizePublicCacheObject(486)|Cachedhdfs://192.168.75.130:9000/root/input/f1.txtas/root/hadoop1.2/hadooptmp/mapred/local/archive/9070031930820799196_1788685676_88844454/192.168.75.130/root/input/f1.txt
  11. INFO-JobClient.monitorAndPrintJob(1380)|Runningjob:job_local479869714_0001
  12. INFO-LocalJobRunner$Job.run(340)|Waitingformaptasks
  13. INFO-LocalJobRunner$Job$MapTaskRunnable.run(204)|Startingtask:attempt_local479869714_0001_m_000000_0
  14. INFO-Task.initialize(534)|UsingResourceCalculatorPlugin:null
  15. INFO-MapTask.runNewMapper(729)|Processingsplit:hdfs://192.168.75.130:9000/root/input/f1.txt:0+31
  16. INFO-MapTask$MapOutputBuffer.<init>(949)|io.sort.mb=100
  17. INFO-MapTask$MapOutputBuffer.<init>(961)|databuffer=79691776/99614720
  18. INFO-MapTask$MapOutputBuffer.<init>(962)|recordbuffer=262144/327680
  19. INFO-TestDistributed$FileMapper.setup(57)|开始启动setup了哈哈哈哈
  20. 获取的路径是:/root/hadoop1.2/hadooptmp/mapred/local/archive/9070031930820799196_1788685676_88844454/192.168.75.130/root/input/f1.txt
  21. map里输出
  22. map里输出
  23. INFO-TestDistributed$FileMapper.cleanup(107)|清空任务了。。。。。。
  24. INFO-MapTask$MapOutputBuffer.flush(1289)|Startingflushofmapoutput
  25. INFO-MapTask$MapOutputBuffer.sortAndSpill(1471)|Finishedspill0
  26. INFO-Task.done(858)|Task:attempt_local479869714_0001_m_000000_0isdone.Andisintheprocessofcommiting
  27. INFO-LocalJobRunner$Job.statusUpdate(466)|
  28. INFO-Task.sendDone(970)|Task'attempt_local479869714_0001_m_000000_0'done.
  29. INFO-LocalJobRunner$Job$MapTaskRunnable.run(229)|Finishingtask:attempt_local479869714_0001_m_000000_0
  30. INFO-LocalJobRunner$Job.run(348)|Maptaskexecutorcomplete.
  31. INFO-Task.initialize(534)|UsingResourceCalculatorPlugin:null
  32. INFO-LocalJobRunner$Job.statusUpdate(466)|
  33. INFO-Merger$MergeQueue.merge(408)|Merging1sortedsegments
  34. INFO-Merger$MergeQueue.merge(491)|Downtothelastmerge-pass,with1segmentsleftoftotalsize:16bytes
  35. INFO-LocalJobRunner$Job.statusUpdate(466)|
  36. 我是reduce里面的东西
  37. INFO-Task.done(858)|Task:attempt_local479869714_0001_r_000000_0isdone.Andisintheprocessofcommiting
  38. INFO-LocalJobRunner$Job.statusUpdate(466)|
  39. INFO-Task.commit(1011)|Taskattempt_local479869714_0001_r_000000_0isallowedtocommitnow
  40. INFO-FileOutputCommitter.commitTask(173)|Savedoutputoftask'attempt_local479869714_0001_r_000000_0'tohdfs://192.168.75.130:9000/root/outputsort
  41. INFO-LocalJobRunner$Job.statusUpdate(466)|reduce>reduce
  42. INFO-Task.sendDone(970)|Task'attempt_local479869714_0001_r_000000_0'done.
  43. INFO-JobClient.monitorAndPrintJob(1393)|map100%reduce100%
  44. INFO-JobClient.monitorAndPrintJob(1448)|Jobcomplete:job_local479869714_0001
  45. INFO-Counters.log(585)|Counters:18
  46. INFO-Counters.log(587)|FileOutputFormatCounters
  47. INFO-Counters.log(589)|BytesWritten=0
  48. INFO-Counters.log(587)|FileInputFormatCounters
  49. INFO-Counters.log(589)|BytesRead=31
  50. INFO-Counters.log(587)|FileSystemCounters
  51. INFO-Counters.log(589)|FILE_BYTES_READ=454
  52. INFO-Counters.log(589)|HDFS_BYTES_READ=124
  53. INFO-Counters.log(589)|FILE_BYTES_WRITTEN=138372
  54. INFO-Counters.log(587)|Map-ReduceFramework
  55. INFO-Counters.log(589)|Mapoutputmaterializedbytes=20
  56. INFO-Counters.log(589)|Mapinputrecords=2
  57. INFO-Counters.log(589)|Reduceshufflebytes=0
  58. INFO-Counters.log(589)|SpilledRecords=4
  59. INFO-Counters.log(589)|Mapoutputbytes=10
  60. INFO-Counters.log(589)|Totalcommittedheapusage(bytes)=455475200
  61. INFO-Counters.log(589)|Combineinputrecords=0
  62. INFO-Counters.log(589)|SPLIT_RAW_BYTES=109
  63. INFO-Counters.log(589)|Reduceinputrecords=2
  64. INFO-Counters.log(589)|Reduceinputgroups=1
  65. INFO-Counters.log(589)|Combineoutputrecords=0
  66. INFO-Counters.log(589)|Reduceoutputrecords=0
  67. INFO-Counters.log(589)|Mapoutputrecords=2
运行模式:  local
存在此路径,已经删除......
WARN - NativeCodeLoader.<clinit>(52) | Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
WARN - JobClient.copyAndConfigureFiles(746) | Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
WARN - JobClient.copyAndConfigureFiles(870) | No job jar file set.  User classes may not be found. See JobConf(Class) or JobConf#setJar(String).
INFO - FileInputFormat.listStatus(237) | Total input paths to process : 1
WARN - LoadSnappy.<clinit>(46) | Snappy native library not loaded
INFO - TrackerDistributedCacheManager.downloadCacheObject(423) | Creating f1.txt in /root/hadoop1.2/hadooptmp/mapred/local/archive/9070031930820799196_1788685676_88844454/192.168.75.130/root/input-work-186410214545932656 with rwxr-xr-x
INFO - TrackerDistributedCacheManager.downloadCacheObject(463) | Cached hdfs://192.168.75.130:9000/root/input/f1.txt as /root/hadoop1.2/hadooptmp/mapred/local/archive/9070031930820799196_1788685676_88844454/192.168.75.130/root/input/f1.txt
INFO - TrackerDistributedCacheManager.localizePublicCacheObject(486) | Cached hdfs://192.168.75.130:9000/root/input/f1.txt as /root/hadoop1.2/hadooptmp/mapred/local/archive/9070031930820799196_1788685676_88844454/192.168.75.130/root/input/f1.txt
INFO - JobClient.monitorAndPrintJob(1380) | Running job: job_local479869714_0001
INFO - LocalJobRunner$Job.run(340) | Waiting for map tasks
INFO - LocalJobRunner$Job$MapTaskRunnable.run(204) | Starting task: attempt_local479869714_0001_m_000000_0
INFO - Task.initialize(534) |  Using ResourceCalculatorPlugin : null
INFO - MapTask.runNewMapper(729) | Processing split: hdfs://192.168.75.130:9000/root/input/f1.txt:0+31
INFO - MapTask$MapOutputBuffer.<init>(949) | io.sort.mb = 100
INFO - MapTask$MapOutputBuffer.<init>(961) | data buffer = 79691776/99614720
INFO - MapTask$MapOutputBuffer.<init>(962) | record buffer = 262144/327680
INFO - TestDistributed$FileMapper.setup(57) | 开始启动setup了哈哈哈哈
获取的路径是:  /root/hadoop1.2/hadooptmp/mapred/local/archive/9070031930820799196_1788685676_88844454/192.168.75.130/root/input/f1.txt
map里输出了
map里输出了
INFO - TestDistributed$FileMapper.cleanup(107) | 清空任务了。。。。。。
INFO - MapTask$MapOutputBuffer.flush(1289) | Starting flush of map output
INFO - MapTask$MapOutputBuffer.sortAndSpill(1471) | Finished spill 0
INFO - Task.done(858) | Task:attempt_local479869714_0001_m_000000_0 is done. And is in the process of commiting
INFO - LocalJobRunner$Job.statusUpdate(466) | 
INFO - Task.sendDone(970) | Task 'attempt_local479869714_0001_m_000000_0' done.
INFO - LocalJobRunner$Job$MapTaskRunnable.run(229) | Finishing task: attempt_local479869714_0001_m_000000_0
INFO - LocalJobRunner$Job.run(348) | Map task executor complete.
INFO - Task.initialize(534) |  Using ResourceCalculatorPlugin : null
INFO - LocalJobRunner$Job.statusUpdate(466) | 
INFO - Merger$MergeQueue.merge(408) | Merging 1 sorted segments
INFO - Merger$MergeQueue.merge(491) | Down to the last merge-pass,with 1 segments left of total size: 16 bytes
INFO - LocalJobRunner$Job.statusUpdate(466) | 
我是reduce里面的东西
INFO - Task.done(858) | Task:attempt_local479869714_0001_r_000000_0 is done. And is in the process of commiting
INFO - LocalJobRunner$Job.statusUpdate(466) | 
INFO - Task.commit(1011) | Task attempt_local479869714_0001_r_000000_0 is allowed to commit now
INFO - FileOutputCommitter.commitTask(173) | Saved output of task 'attempt_local479869714_0001_r_000000_0' to hdfs://192.168.75.130:9000/root/outputsort
INFO - LocalJobRunner$Job.statusUpdate(466) | reduce > reduce
INFO - Task.sendDone(970) | Task 'attempt_local479869714_0001_r_000000_0' done.
INFO - JobClient.monitorAndPrintJob(1393) |  map 100% reduce 100%
INFO - JobClient.monitorAndPrintJob(1448) | Job complete: job_local479869714_0001
INFO - Counters.log(585) | Counters: 18
INFO - Counters.log(587) |   File Output Format Counters 
INFO - Counters.log(589) |     Bytes Written=0
INFO - Counters.log(587) |   File Input Format Counters 
INFO - Counters.log(589) |     Bytes Read=31
INFO - Counters.log(587) |   FileSystemCounters
INFO - Counters.log(589) |     FILE_BYTES_READ=454
INFO - Counters.log(589) |     HDFS_BYTES_READ=124
INFO - Counters.log(589) |     FILE_BYTES_WRITTEN=138372
INFO - Counters.log(587) |   Map-Reduce Framework
INFO - Counters.log(589) |     Map output materialized bytes=20
INFO - Counters.log(589) |     Map input records=2
INFO - Counters.log(589) |     Reduce shuffle bytes=0
INFO - Counters.log(589) |     Spilled Records=4
INFO - Counters.log(589) |     Map output bytes=10
INFO - Counters.log(589) |     Total committed heap usage (bytes)=455475200
INFO - Counters.log(589) |     Combine input records=0
INFO - Counters.log(589) |     SPLIT_RAW_BYTES=109
INFO - Counters.log(589) |     Reduce input records=2
INFO - Counters.log(589) |     Reduce input groups=1
INFO - Counters.log(589) |     Combine output records=0
INFO - Counters.log(589) |     Reduce output records=0
INFO - Counters.log(589) |     Map output records=2


下面,我们将程序,提交成hadoop集群上运行进行测试,注意在集群上运行,日志信息就不会在控制台显示了,我们需要去自己定义的日志目录下,找到最新提交 的那个下,然后就可以查看我们的日志信息了。



查看stdout里面的内容如下:

Java代码
  1. 获取的路径是:/root/hadoop1.2/mylogs/taskTracker/distcache/2726204645197711229_1788685676_88844454/192.168.75.130/root/input/f1.txt
  2. map里输出
  3. map里输出
获取的路径是:  /root/hadoop1.2/mylogs/taskTracker/distcache/2726204645197711229_1788685676_88844454/192.168.75.130/root/input/f1.txt
map里输出了
map里输出


注意,map里面的日志需要去xxxmxxx和xxxrxxx里面去找:


当然,除了这种方式外,我们还可以直接通过50030端口在web页面上进行查看,截图示例如下:









至此,我们已经散仙已经介绍完了,这两种方式,Hadoop在执行过程中,日志会被随机分到任何一台节点上,我们可能不能确定本次提交的任务日志输出到底放在那里,但是我们可以通过在50030的web页面上,查看最新的一次任务,一般是最下面的任务,是最新提交的,通过页面上的连接我们就可以,查看到具体的本次任务的日志情况被随机分发到那个节点上了,然后就可以去具体的 节点上获取了。

猜你在找的XML相关文章