给定一组3D点和直径大小,我想绘制一个与
Windows管道屏幕保护程序
http://answers.yahoo.com/question/index?qid=20080919090035AAO55Qv相同的3D管道.
我正在使用C和OpenGL.任何人都可以帮我找到可以告诉我如何实现这一目标的资源吗?
经过一番调查后,似乎我们必须做额外的工作才能使转折点看起来光滑.如果可能的话,我正在寻找一些示例代码来说明如何实现它
谢谢
我会告诉我如何做这样的屏幕保护程序.我的管道适合3d网格,每个单元格都是一个立方体:
Y^ |_______ / 2 /| 0 vs 3 /______/ | 1 vs 4 | |1| 2 vs 5 | 3 | / |______|/ -->X / -Z/
每个单元中的管道配置由六位描述 – 每侧一位. 0表示单元格为空,63表示有6个段位于中心.如果将组合分解为类型,则会很少:
>短棍,x6
>长棍,x3(0-3,1-4,2-5)
>拱门,x12(2 – 1,1 – 3,2 – 3)
> T形交叉口,x12(1 – 3 – 4)
>角,x8(2 – 1 – 3,2 – 3 – 4)
>十字架,x3(3 – 1 – 2 – 4)
>四段式集群,x12(1 – 2 – 3 – 4)
>五段集群,x6
>六段星,x1.
我使用圆环四分之一用于拱门(自我合成),球形三角形补丁用于角落和圆柱体用于其他一切.星形,十字形和五段在我的模型中只是相交的圆柱体.
编辑:C#中的一些代码(我希望它在某种程度上有用).
现场的所有内容都由三种模型组合而成 – 拱形,圆柱形和球形三角形贴片,旋转和渲染多次.所有模型都在顶点数组中.很快我遇到了性能问题并实现了简单的基于距离的LOD来对抗它.所以,我生成的不是每种模型,而是一系列具有不同细分数的模型.
/// <summary> /// Generates full row of arch models and lod map /// to render them. /// </summary> /// <param name="radius">Pipe radius</param> /// <returns>Model with lod</returns> Model GenerateArches(double radius) { //Determine total number of vertices for full row LodEntry[] lod = new LodEntry[slicesLod.Length]; int totalVertices = 0; int totalIndices = 0; for (int level = 0; level < slicesLod.Length; ++level) { int sl = slicesLod[level]; int st = archStacksLod[level]; if (st < 3) st = 3; int vertices = (sl + 1)*(st + 1); int indices = ((sl + 1)*2 + 4)*(st) - 4; lod[level].start = totalIndices; totalVertices += vertices; totalIndices += indices; lod[level].count = indices; } int[] indexArray = new int[totalIndices]; VertexAttributes[] va = new VertexAttributes[totalVertices]; int vCounter = 0; //index for vertices int iCounter = 0; //indices counter for (int level = 0; level < slicesLod.Length; ++level) { int iOffset = vCounter; int slices = slicesLod[level]; int stacks = archStacksLod[level]; if (stacks < 3) stacks = 3; for (int st = 0; st <= stacks; ++st) { double a = Math.PI*0.5*st/stacks; float texCoordS = st/(float) stacks; for (int sl = 0; sl <= slices; ++sl) { double b = Math.PI*2*sl/slices; float texCoordT = sl/(float) slices; va[vCounter].S = texCoordS; va[vCounter].T = texCoordT; //point on central arch double x0 = 0.5*Math.Sin(a); double y0 = 0.5*Math.Cos(a); const double z0 = 0; //point displacement double rx = radius*Math.Sin(a)*Math.Sin(b); double ry = radius*Math.Cos(a)*Math.Sin(b); double rz = radius*Math.Cos(b); //normal factor double nf = 1.0/Math.Sqrt(rx*rx + ry*ry + rz*rz); va[vCounter].NX = (float)(rx * nf); va[vCounter].NY = (float)(ry * nf); va[vCounter].NZ = (float)(rz * nf); //position va[vCounter].X = (float) (x0 + rx); va[vCounter].Y = (float) (y0 + ry); va[vCounter].Z = (float) (z0 + rz); ++vCounter; } } for (int stack = 0; stack < stacks; ++stack) { for (int slice = 0; slice <= slices; ++slice) { indexArray[iCounter++] = iOffset + stack * slices + slice + stack; indexArray[iCounter++] = iOffset + (stack + 1) * slices + slice + 1 + stack; } if (stack < stacks - 1) { indexArray[iCounter++] = iOffset + stack * slices + slices + stack; indexArray[iCounter++] = iOffset + stack * slices + slices + stack; indexArray[iCounter++] = iOffset + (stack + 1) * slices + slices + 2 * (stack + 1) - stack; indexArray[iCounter++] = iOffset + (stack + 1) * slices + slices + 2 * (stack + 1) - stack; } } } return new Model(va,indexArray,lod); } /// <summary> /// Generates indices for rendering of vertex array,/// representing a cylinder section. /// Vertices assumed to be stored slice by slice: /// 0 1 2 3 ................... cylStacks-1,/// cylStacks .................. 2*cylStacks-1,/// ....................................,/// (cylSlices-1)*cylStacks .. cylSlices*cylStacks-1. /// </summary> /// <param name="radius"></param> private Model GenerateCylinders(double radius) { LodEntry[] lod = new LodEntry[slicesLod.Length]; int totalVertices = 0; int totalIndices = 0; for (int level = 0; level < slicesLod.Length; ++level) { int sl = slicesLod[level]; int st = cylStacksLod[level]; int vertices = (sl + 1)*(st + 1); int indices = ((sl+1)*2 + 4)*st - 4; lod[level].start = totalIndices; totalVertices += vertices; totalIndices += indices; lod[level].count = indices; } int[] indexArray = new int[totalIndices]; VertexAttributes[] va = new VertexAttributes[totalVertices]; int vCounter = 0; //index for vertex attributes int iCounter = 0; //indices counter for (int level = 0; level < slicesLod.Length; ++level) { int iOffset = vCounter; int slices = slicesLod[level]; int stacks = cylStacksLod[level]; for (int st = 0; st <= stacks; ++st) { double i = 0.5 - 0.5 * st / stacks; float texCoordS = st / (float)stacks; for (int sl = 0; sl <= slices; ++sl) { double b = Math.PI * 2 * sl / slices; //tex coords float texCoordT = sl / (float)slices; va[vCounter].S = 0.5f * texCoordS; va[vCounter].T = texCoordT; //point on central axis const double x0 = 0; const double y0 = 0; double z0 = i; //point displacement double rx = radius*Math.Cos(b); double ry = radius*Math.Sin(b); const double rz = 0; //normal factor double nf = 1.0/Math.Sqrt(ry*ry + rx*rx); va[vCounter].NX = (float)(rx * nf); va[vCounter].NY = (float)(ry * nf); va[vCounter].NZ = 0.0f; va[vCounter].X = (float)(x0 + rx); va[vCounter].Y = (float)(y0 + ry); va[vCounter].Z = (float)(z0 + rz); ++vCounter; } } for (int stack = 0; stack < stacks; ++stack) { for (int slice = 0; slice <= slices; ++slice) { indexArray[iCounter++] = iOffset + stack*slices + slice + stack; indexArray[iCounter++] = iOffset + (stack + 1)*slices + slice + 1 + stack; } if (stack < stacks - 1) { indexArray[iCounter++] = iOffset + stack * slices + slices + stack; indexArray[iCounter++] = iOffset + stack * slices + slices + stack; indexArray[iCounter++] = iOffset + (stack + 1) * slices + slices + 2 * (stack + 1) - stack; indexArray[iCounter++] = iOffset + (stack + 1) * slices + slices + 2 * (stack + 1) - stack; } } } return new Model(va,lod); } static int R0(int _slices,int _level) { return _level * (_slices+2) - (int)(0.5 * _level * (_level + 1)); } static int RL(int _slices,int _level) { return _slices - _level + 1; } private Model GenerateSphereSegment(double radius) { //Determine total number of vertices for full row LodEntry[] lod = new LodEntry[slicesLod.Length]; int totalVertices = 0; int totalIndices = 0; for (int level = 0; level < slicesLod.Length; ++level) { int sl = slicesLod[level] >> 2; int vertices = (((2 + sl) * (sl + 1)) >> 1); int indices = sl * (sl + 3); lod[level].start = totalIndices; totalVertices += vertices; totalIndices += indices; lod[level].count = indices; } int[] indexArray = new int[totalIndices]; VertexAttributes[] va = new VertexAttributes[totalVertices]; int vCounter = 0; //index for vertices int iCounter = 0; //indices counter for (int level = 0; level < slicesLod.Length; ++level) { int sphSlices = slicesLod[level]>>2; int iOffset = vCounter; //index offset for level for (int sl = 0; sl <= sphSlices; ++sl) { double a = Math.PI*sl*0.5/sphSlices; double Y = radius*Math.Sin(a); double Ry = radius*Math.Cos(a); for (int st = 0; st <= sphSlices - sl; ++st) { double X,Z,b; if (sphSlices > sl) { b = Math.PI*0.5*st/(sphSlices - sl); X = Ry*Math.Sin(b); Z = Ry*Math.Cos(b); } else { X = 0; Z = 0; b = 0; } va[vCounter].S = (float)(0.5 / 3 * a); va[vCounter].T = (float)(0.14 * b); double coeff = 1/Math.Sqrt(X*X + Y*Y + Z*Z); va[vCounter].NX = (float)(X * coeff); va[vCounter].NY = (float)(Y * coeff); va[vCounter].NZ = (float)(Z * coeff); va[vCounter].X = (float)(va[vCounter].NX * radius); va[vCounter].Y = (float)(va[vCounter].NY * radius); va[vCounter].Z = (float)(va[vCounter].NZ * radius); ++vCounter; } } for (int k = 0; k < sphSlices; ++k) { int lastS = RL(sphSlices,k); for (int s = 0; s < lastS - 1; ++s) { int c0 = R0(sphSlices,k) + s; int cn = R0(sphSlices,k) + s + RL(sphSlices,k); indexArray[iCounter++] = cn + iOffset; indexArray[iCounter++] = c0 + iOffset; } int tail = R0(sphSlices,k) + lastS - 1; indexArray[iCounter++] = tail + iOffset; indexArray[iCounter++] = tail + iOffset; } } return new Model(va,lod); }