D3D中多流的用法 |
(本文为了方便起见,把DirectX Graphics称为D3D) 在D3D中,要渲染的顶点数据是放在Vertex Buffer中的,一般的做法是把顶点坐标、颜色等按照自定义的顶点格式放在同一个Vertex Buffer中,代表一个流,然后通过FVF来告诉D3D要渲染的顶点的格式。但是在某些情况下,放在一起并不是最佳选择。比如在动画中,每一帧的顶点坐标都在变化,但是纹理坐标却都不变(md3格式就是如此)。如果只用一个流,每画一帧就得把所有数据都拷贝到一个临时Vertex Buffer中再渲染,开销巨大。如果能把不同的数据放在不同的流中,就可以只更新顶点坐标的流,而纹理坐标的流就可以保持不变了。而且,只用一个Vertex Buffer时要管理FVF和数据结构体之间的关系,万一弄错了,是很难发现的。 如果使用多流,麻烦就能少些。下面就让我们看看如何在D3D中实现多流。这个例子很简单,显示一个三角形,三个顶点的颜色分别是红、绿、蓝。因为本例的数据只有顶点坐标和颜色两种数据,所以只有两个Vertex Buffer。同时,由于D3D8在使用多流时必须使用Shader来声明顶点格式,所以声明一个g_Shader变量。整个程序是这样的: #include <d3d8.h> #include <d3dx8.h> #pragma comment(lib,"d3d8.lib") #pragma comment(lib,"d3dx8.lib") template <typename T> inline void SAFE_RELEASE(T& p) { if (p != 0) { p->Release(); p = 0; } } IDirect3D8* g_pD3D = NULL; IDirect3DDevice8* g_pd3dDevice = NULL; IDirect3DVertexBuffer8* g_pVBPos = NULL; IDirect3DVertexBuffer8* g_pVBCol = NULL; DWORD g_Shader = 0xFFFFFFFF; void InitD3D(HWND hWnd) { g_pD3D = Direct3DCreate8(D3D_SDK_VERSION); D3DDISPLAYMODE d3ddm; g_pD3D->GetAdapterDisplayMode(D3DADAPTER_DEFAULT,&d3ddm); D3DPRESENT_PARAMETERS d3dpp; ZeroMemory(&d3dpp,sizeof(d3dpp)); d3dpp.Windowed = TRUE; d3dpp.SwapEffect = D3DSWAPEFFECT_DISCARD; d3dpp.BackBufferFormat = d3ddm.Format; g_pD3D->CreateDevice(D3DADAPTER_DEFAULT,D3DDEVTYPE_HAL,hWnd,D3DCREATE_SOFTWARE_VERTEXPROCESSING,&d3dpp,&g_pd3dDevice); g_pd3dDevice->SetRenderState(D3DRS_LIGHTING,FALSE); D3DXMATRIX matWorld; D3DXMatrixIdentity(&matWorld); g_pd3dDevice->SetTransform(D3DTS_WORLD,&matWorld); D3DXMATRIX matView; D3DXMatrixLookAtLH(&matView,&D3DXVECTOR3(0,-3),0),1,0)); g_pd3dDevice->SetTransform(D3DTS_VIEW,&matView); D3DXMATRIX matProj; D3DXMatrixPerspectiveFovLH(&matProj,D3DX_PI / 4,0.1f,10); g_pd3dDevice->SetTransform(D3DTS_PROJECTION,&matProj); } void InitVB() { // 多个流的格式 DWORD shaderDecl[] = { D3DVSD_STREAM(0), D3DVSD_REG(D3DVSDE_POSITION,D3DVSDT_FLOAT3), D3DVSD_STREAM(1), D3DVSD_REG(D3DVSDE_DIFFUSE,D3DVSDT_D3DCOLOR), D3DVSD_END(), }; // 位置数据 D3DVECTOR Positions[] = { { -1,-1,1 }, { 0, { 1, }; // 颜色数据 D3DCOLOR Colors[] = { D3DCOLOR_XRGB(0xFF, D3DCOLOR_XRGB(0,0xFF,0xFF), }; // 建立两个VB g_pd3dDevice->CreateVertexBuffer(3 * sizeof(D3DVECTOR),D3DUSAGE_DYNAMIC | D3DUSAGE_WRITEONLY,D3DPOOL_DEFAULT,&g_pVBPos); g_pd3dDevice->CreateVertexBuffer(3 * sizeof(D3DCOLOR),&g_pVBCol); // 建立VS g_pd3dDevice->CreateVertexShader(shaderDecl,NULL,&g_Shader,0); // 填充数据 void* pPositions; g_pVBPos->Lock(0,reinterpret_cast<BYTE**>(&pPositions),0); memcpy(pPositions,Positions,sizeof(Positions)); g_pVBPos->Unlock(); void* pColor; g_pVBCol->Lock(0,reinterpret_cast<BYTE**>(&pColor),0); memcpy(pColor,Colors,sizeof(Colors)); g_pVBCol->Unlock(); } void Cleanup() { // 释放两个流 g_pd3dDevice->SetStreamSource(0,sizeof(D3DVECTOR)); g_pd3dDevice->SetStreamSource(1,sizeof(D3DCOLOR)); // 删除VS g_pd3dDevice->DeleteVertexShader(g_Shader); SAFE_RELEASE(g_pVBPos); SAFE_RELEASE(g_pVBCol); SAFE_RELEASE(g_pd3dDevice); SAFE_RELEASE(g_pD3D); } void Render() { g_pd3dDevice->Clear(0,D3DCLEAR_TARGET,D3DCOLOR_XRGB(0x33,0x66,0x99),1.0f,0); g_pd3dDevice->BeginScene(); g_pd3dDevice->SetVertexShader(g_Shader); g_pd3dDevice->SetStreamSource(0,g_pVBPos,g_pVBCol,sizeof(D3DCOLOR)); g_pd3dDevice->DrawPrimitive(D3DPT_TRIANGLELIST,1); g_pd3dDevice->EndScene(); g_pd3dDevice->Present(NULL,NULL); } LRESULT WINAPI MsgProc(HWND hWnd,UINT msg,WPARAM wParam,LPARAM lParam) { switch (msg) { case WM_DESTROY: PostQuitMessage(0); return 0; } return DefWindowProc(hWnd,msg,wParam,lParam); } LPCTSTR wcName(TEXT("Multistream")); INT WINAPI WinMain(HINSTANCE hInst,HINSTANCE,LPSTR,INT) { WNDCLASS wc; wc.style = CS_HREDRAW | CS_VREDRAW; wc.lpfnWndProc = MsgProc; wc.cbClsExtra = 0; wc.cbWndExtra = 0; wc.hInstance = hInst; wc.hIcon = NULL; wc.hCursor = LoadCursor(NULL,IDC_ARROW); wc.hbrBackground = static_cast<HBRUSH>(GetStockObject(BLACK_BRUSH)); wc.lpszMenuName = NULL; wc.lpszClassName = wcName; RegisterClass(&wc); HWND hWnd(CreateWindow(wcName,wcName,WS_OVERLAPPEDWINDOW,100,300,GetDesktopWindow(),wc.hInstance,NULL)); InitD3D(hWnd); InitVB(); ShowWindow(hWnd,SW_SHOWDEFAULT); UpdateWindow(hWnd); MSG msg; ZeroMemory(&msg,sizeof(msg)); while (msg.message != WM_QUIT) { if (PeekMessage(&msg,PM_REMOVE)) { TranslateMessage(&msg); DispatchMessage(&msg); } else { Render(); } } Cleanup(); UnregisterClass(wcName,wc.hInstance); return 0; } 这里把顶点坐标放在一个VB中,而把颜色放在另一个VB中,也终于看到了SetStreamSource的第一个参数不是0的情况:-)。由于使用了两个流,所以设置了0号和1号流,分别为前面填充的顶点坐标流和颜色流。然后建立Vertex Shaer。由于这里只使用固定的pipeline,所以CreateVertexShader的第二参数为NULL。要注意的是,SetVertexShader的参数是Verter Shader的句柄,而不是FVF。如果没有CreateVertexShader,而想当然地直接把FVF的值作为参数传给SetVertexShader,则会出现结果未定义的情况。 DX9的情况 D3D9对流的部分作了不少改进,所以,我们要写的代码也得做一些更改。全局变量改为: IDirect3D9* g_pD3D = NULL; IDirect3DDevice9* g_pd3dDevice = NULL; IDirect3DVertexBuffer9* g_pVBPos = NULL; IDirect3DVertexBuffer9* g_pVBCol = NULL; IDirect3DVertexDeclaration9* g_pVertexDeclaration = NULL; 前四个变量不用说了,只是把8变成9。而IDirect3DVertexDeclaration9是D3D9新增的,专门用于声明流的格式,相当于一个功能更强大的FVF。这回不用声明Vertex Shader了。 InitD3D中只需把 g_pD3D = Direct3DCreate8(D3D_SDK_VERSION); 改为 g_pD3D = Direct3DCreate9(D3D_SDK_VERSION); 就行了。 InitVB改为: void InitVB() { D3DVERTEXELEMENT9 shaderDecl[] = { { 0,D3DDECLTYPE_FLOAT3,D3DDECLMETHOD_DEFAULT,D3DDECLUSAGE_POSITION,0 }, { 1,D3DDECLTYPE_D3DCOLOR,D3DDECLUSAGE_COLOR, { 0xFF,D3DDECLTYPE_UNUSED, }; D3DVECTOR Positions[] = { { -1, { 0, }; D3DCOLOR Colors[] = { D3DCOLOR_XRGB(0xFF, D3DCOLOR_XRGB(0, }; g_pd3dDevice->CreateVertexBuffer(3 * sizeof(D3DVECTOR),&g_pVBPos,NULL); g_pd3dDevice->CreateVertexBuffer(3 * sizeof(D3DCOLOR),&g_pVBCol,NULL); g_pd3dDevice->CreateVertexDeclaration(shaderDecl,&g_pVertexDeclaration); void* pPositions; g_pVBPos->Lock(0,&pPositions,0); memcpy(pPositions,sizeof(Positions)); g_pVBPos->Unlock(); void* pColor; g_pVBCol->Lock(0,&pColor,0); memcpy(pColor,sizeof(Colors)); g_pVBCol->Unlock(); } 在DX9中应该通过D3DVERTEXELEMENT9来声明数据格式,所以shaderDecl部分做了变化,并用CreateVertexDeclaration建立了一个VertexDeclaration。 最后在Render中把 g_pd3dDevice->SetVertexShader(g_Shader); 换成 g_pd3dDevice->SetVertexDeclaration(g_pVertexDeclaration); 这就是多流的DX9版本。 总结 灵活运用多流,能提高渲染效率,减少出错的可能性。如果要做跨API的渲染系统,应该优先考虑使用多流。 参考DX SDKOGRE |