假设 n = i * j(i <= j) , k = j – i >= 0
思路一:
j = n / i>=i(注意:i – int(n / i) 随着i的增大而增大,int(n/i)指n/i的整数部份)
从i = 1 开始判断 i是否能被n整除,当int(n / i) < i时终止
思路二:
n = i * (i + k)=>k = (n – i * i) / i>= 0=>k = m / i >= 0 (设m = n – i * i)
从i = 1 开始判断 i是否能被m整除,当m < 0(即k < 0)时终止
思路三:
假设 n =A^a * B^b … Z^z其中AB…Z为n的质因子
假设 na = n / A^a,可以将 na 与0到a个A进行组合,得到a+1个因子,
对每个组合中的na,可以采用类似的方法,得到其它因子。
最终可得到 (a+1)*(b+1) … *(z+1)个因子
//第一种实现方法 可能存在大量重复计算
void output(unsigned k) { printf("%u\n",k); } static void factor_odd(unsigned n,unsigned k = 1,unsigned beg = 3) { assert(n & 1); assert(beg & 1); if (n == 1) return output(k); assert(n >= beg); for (unsigned i = beg,count = 0; ;i += 2) { //if (n % i) { // if (i <= n / i) continue; // output(k); //n是质数 // output(k * n); // return; //} if (i > n / i) { output(k); //n是质数 output(k * n); return; } if (n % i) continue; ++count; n /= i; while (n % i == 0) { ++count; n /= i; } for (unsigned j = 0,kk = k; j <= count; ++j,kk *= i) factor_odd(n,kk,i + 2); return; } } void factor(unsigned n) { unsigned count = 0; while (n % 2u == 0) { ++count; n /= 2u;} for (unsigned j = 0,k = 1; j <= count; ++j,k *= 2) factor_odd(n,k,3); printf("---\n"); }
//第二种实现方法 多费点内存
void factor_bfs(unsigned n) { const unsigned KK = 64; //64位整数的质因子个数肯定小于64 unsigned va[KK],vb[KK],sz = 0; //va、vb分别记录质因子及其数目 unsigned count = 0; while (n % 2u == 0) { ++count; n /= 2u;} if (count) { va[sz] = 2; vb[sz++] = count; }; for (unsigned i = 3; ; i += 2) { if (i > n / i) { if (n != 1) { va[sz] = n; vb[sz++] = 1; } break; } if (n % i == 0) { unsigned count = 0; do { n /= i; ++count; } while (n % i == 0); va[sz] = i; vb[sz++] = count; } } if (sz == 0) return; std::deque<unsigned> dq; for (unsigned j = 0,s = 1; j <= vb[0]; ++j,s *= va[0]) dq.push_back(s); for (unsigned i = 1; i < sz; ++i) for (unsigned s = va[i],dsz = dq.size(),j = 0; j < vb[i]; ++j,s *= va[i]) for (unsigned k = 0; k < dsz; ++k) { dq.push_back(dq[k] * s); } std::copy(dq.begin(),dq.end(),std::ostream_iterator<unsigned>(std::cout,"\n")); }
原文出处: http://www.cnblogs.com/flyinghearts/archive/2011/03/22/1992002.html