文本比较的核心就是比较两个给定的文本(可以是字节流等)之间的差异。目前,主流的比较文本之间的差异主要有两大类。一类是基于编辑距离(Edit Distance)的,例如LD算法。一类是基于最长公共子串的(Longest Common Subsequence),例如Needleman/Wunsch算法等。
LD算法(Levenshtein Distance)又成为编辑距离算法(Edit Distance)。他是以字符串A通过插入字符、删除字符、替换字符变成另一个字符串B,那么操作的过程的次数表示两个字符串的差异。
例如:字符串A:kitten如何变成字符串B:sitting。
第一步:kitten——》sitten。k替换成s
第二步:sitten——》sittin。e替换成i
第三步:sittin——》sitting。在末尾插入g
故kitten和sitting的编辑距离为3
定义说明:
LD(A,B)表示字符串A和字符串B的编辑距离。很显然,若LD(A,B)=0表示字符串A和字符串B完全相同
Rev(A)表示反转字符串A
Len(A)表示字符串A的长度
A+B表示连接字符串A和字符串B
有下面几个性质:
LD(A,A)=0
LD(A,"")=Len(A)
LD(A,B)=LD(B,A)
0≤LD(A,B)≤Max(Len(A),Len(B))
LD(A,B)=LD(Rev(A),Rev(B))
LD(A+C,B+C)=LD(A,B)
LD(A+B,A+C)=LD(B,C)
LD(A,B)≤LD(A,C)+LD(B,C)(注:像不像“三角形,两边之和大于第三边”)
LD(A+C,B)+LD(B,C)
为了讲解计算LD(A,B),特给予以下几个定义
A=a1a2……aN,表示A是由a1a2……aN这N个字符组成,Len(A)=N
B=b1b2……bM,表示B是由b1b2……bM这M个字符组成,Len(B)=M
定义LD(i,j)=LD(a1a2……ai,b1b2……bj),其中0≤i≤N,0≤j≤M
故: LD(N,M)=LD(A,B)
LD(0,0)=0
LD(0,j)=j
LD(i,0)=i
对于1≤i≤N,1≤j≤M,有公式一
若ai=bj,则LD(i,j)=LD(i-1,j-1)
若ai≠bj,则LD(i,j)=Min(LD(i-1,j-1),LD(i-1,j),LD(i,j-1))+1
举例说明:A=GGATCGA,B=GAATTCAGTTA,计算LD(A,B)
第一步:初始化LD矩阵
G | A | A | T | T | C | A | G | T | T | A | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |
G | 1 | |||||||||||
G | 2 | |||||||||||
A | 3 | |||||||||||
T | 4 | |||||||||||
C | 5 | |||||||||||
G | 6 | |||||||||||
A | 7 |
第二步:利用上述的公式一,计算第一行
G | A | A | T | T | C | A | G | T | T | A | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |
G | 1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
G | 2 | |||||||||||
A | 3 | |||||||||||
T | 4 | |||||||||||
C | 5 | |||||||||||
G | 6 | |||||||||||
A | 7 |
第三步,利用上述的公示一,计算其余各行
G | A | A | T | T | C | A | G | T | T | A | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |
G | 1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
G | 2 | 1 | 1 | 2 | 3 | 4 | 5 | 6 | 6 | 7 | 8 | 9 |
A | 3 | 2 | 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 8 |
T | 4 | 3 | 2 | 2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
C | 5 | 4 | 3 | 3 | 2 | 2 | 2 | 3 | 4 | 5 | 6 | 7 |
G | 6 | 5 | 4 | 4 | 3 | 3 | 3 | 3 | 3 | 4 | 5 | 6 |
A | 7 | 6 | 5 | 4 | 4 | 4 | 4 | 3 | 4 | 4 | 5 | 5 |
则LD(A,B)=LD(7,11)=5
下面是LD算法的代码,用的是VB2005。代码格式修正于2012年1月6日。
Private Shared mA() As Char
Private Shared mB() As Char
Public Shared Function LD( ByVal A As String,ByVal B As String) As Integer
mA = A.tocharArray
mB = B.tocharArray
Dim L(A.Length,B.Length) As Integer
Dim i As Integer,j As Integer
For i = 1 To A.Length
L(i,0) = i
Next
For j = 1 To B.Length
L(0,j) = j
Next
For i = 1 To A.Length
For j = 1 To B.Length
If mA(i - 1) = mB(j - 1) Then
L(i,j) = L(i - 1,j - 1)
Else
L(i,j) = Min(L(i - 1,j - 1),L(i - 1,L(i,j - 1)) + 1
End If
Next
Next
Return L(A.Length,B.Length)
End Function
Public Shared Function Min( ByVal A As Integer,ByVal B As Integer,ByVal C As Integer) As Integer
Dim I As Integer = A
If I > B Then I = B
If I > C Then I = C
Return I
End Function
End Class
这个LD算法时间复杂度为O(MN),空间复杂度为O(MN),如果进行优化的话,空间复杂度可以为O(M),优化的代码这里不再详述了。参看“计算字符串的相似度(VB2005)”
我们往往不仅仅是计算出字符串A和字符串B的编辑距离,还要能得出他们的匹配结果。
以上面为例A=GGATCGA,B=GAATTCAGTTA,LD(A,B)=5
他们的匹配为:
A:GGA_TC_G__A
B:GAATTCAGTTA
如上面所示,蓝色表示完全匹配,黑色表示编辑操作,_表示插入字符或者是删除字符操作。如上面所示,黑色字符有5个,表示编辑距离为5。
利用上面的LD矩阵,通过回溯,能找到匹配字串
第一步:定位在矩阵的右下角
G | A | A | T | T | C | A | G | T | T | A | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |
G | 1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
G | 2 | 1 | 1 | 2 | 3 | 4 | 5 | 6 | 6 | 7 | 8 | 9 |
A | 3 | 2 | 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 8 |
T | 4 | 3 | 2 | 2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
C | 5 | 4 | 3 | 3 | 2 | 2 | 2 | 3 | 4 | 5 | 6 | 7 |
G | 6 | 5 | 4 | 4 | 3 | 3 | 3 | 3 | 3 | 4 | 5 | 6 |
A | 7 | 6 | 5 | 4 | 4 | 4 | 4 | 3 | 4 | 4 | 5 | 5 |
第二步:回溯单元格,至矩阵的左上角
若ai=bj,则回溯到左上角单元格
G | A | A | T | T | C | A | G | T | T | A | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |
G | 1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
G | 2 | 1 | 1 | 2 | 3 | 4 | 5 | 6 | 6 | 7 | 8 | 9 |
A | 3 | 2 | 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 8 |
T | 4 | 3 | 2 | 2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
C | 5 | 4 | 3 | 3 | 2 | 2 | 2 | 3 | 4 | 5 | 6 | 7 |
G | 6 | 5 | 4 | 4 | 3 | 3 | 3 | 3 | 3 | 4 | 5 | 6 |
A | 7 | 6 | 5 | 4 | 4 | 4 | 4 | 3 | 4 | 4 | 5 | 5 |
若ai≠bj,回溯到左上角、上边、左边中值最小的单元格,若有相同最小值的单元格,优先级按照左上角、上边、左边的顺序
G | A | A | T | T | C | A | G | T | T | A | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |
G | 1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
G | 2 | 1 | 1 | 2 | 3 | 4 | 5 | 6 | 6 | 7 | 8 | 9 |
A | 3 | 2 | 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 8 |
T | 4 | 3 | 2 | 2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
C | 5 | 4 | 3 | 3 | 2 | 2 | 2 | 3 | 4 | 5 | 6 | 7 |
G | 6 | 5 | 4 | 4 | 3 | 3 | 3 | 3 | 3 | 4 | 5 | 6 |
A | 7 | 6 | 5 | 4 | 4 | 4 | 4 | 3 | 4 | 4 | 5 | 5 |
若当前单元格是在矩阵的第一行,则回溯至左边的单元格
若当前单元格是在矩阵的第一列,则回溯至上边的单元格
G | A | A | T | T | C | A | G | T | T | A | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |
G | 1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
G | 2 | 1 | 1 | 2 | 3 | 4 | 5 | 6 | 6 | 7 | 8 | 9 |
A | 3 | 2 | 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 8 |
T | 4 | 3 | 2 | 2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
C | 5 | 4 | 3 | 3 | 2 | 2 | 2 | 3 | 4 | 5 | 6 | 7 |
G | 6 | 5 | 4 | 4 | 3 | 3 | 3 | 3 | 3 | 4 | 5 | 6 |
A | 7 | 6 | 5 | 4 | 4 | 4 | 4 | 3 | 4 | 4 | 5 | 5 |
依照上面的回溯法则,回溯到矩阵的左上角
第三步:根据回溯路径,写出匹配字串
若回溯到左上角单元格,将ai添加到匹配字串A,将bj添加到匹配字串B
若回溯到上边单元格,将ai添加到匹配字串A,将_添加到匹配字串B
若回溯到左边单元格,将_添加到匹配字串A,将bj添加到匹配字串B
搜索晚整个匹配路径,匹配字串也就完成了
从上面可以看出,LD算法在不需要计算出匹配字串的话,时间复杂度为O(MN),空间复杂度经优化后为O(M)
不过,如果要计算匹配字符串的话,时间复杂度为O(MN),空间复杂度由于需要利用LD矩阵计算匹配路径,故空间复杂度仍然为O(MN)。这个在两个字符串都比较短小的情况下,能获得不错的性能。不过,如果字符串比较长的情况下,就需要极大的空间存放矩阵。例如:两个字符串都是20000字符,则LD矩阵的大小为20000*20000*2=800000000Byte=800MB。呵呵,这是什么概念?故,在比较长字符串的时候,还有其他性能更好的算法。留待后文详述。