Theano 中文文档 0.9 - 5.1 Ubuntu安装说明

前端之家收集整理的这篇文章主要介绍了Theano 中文文档 0.9 - 5.1 Ubuntu安装说明前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。

5.1 Ubuntu安装说明

译者:Python 文档协作翻译小组,原文:Ubuntu Installation Instructions

本文以 CC BY-NC-SA 4.0 协议发布,转载请保留作者署名和文章出处。

Python 文档协作翻译小组人手紧缺,有兴趣的朋友可以加入我们,完全公益性质。交流群:467338606。

警告

如果你想从GitHub安装Theano的前沿或开发版本,请确保你正在阅读此页面的最新版本

要求

注意

我们只支持通过conda安装要求的软件包。

Python> = 2.7或> = 3.3开发包(python-dev或

python-devel在大多数Linux发行版)推荐(见下面)。0.6及以前的版本支持Python 2.4。0.8.2及以前的版本支持Python 2.6。对于Python 3,支持3.3之后的版本。

NumPy >= 1.9.1

早期版本可以工作,但我们没有测试。

SciPy >= 0.14

当前只有稀疏矩阵和特殊功能需要,但强烈推荐。SciPy > = 0.8可以工作,但早期版本对稀疏矩阵有已知的错误

BLAS安装(具有Level 3的功能

  • 推荐:MKL,通过Conda免费安装。
  • 或者,我们建议安装OpenBLAS,其中包含development headers(-devel-dev,具体取决于你的Linux发行版本)。

可选要求

g++python-dev> = 4.2

**强烈推荐。**Theano可以回退基于NumPy的Python执行模型,但C编译器允许更快的执行。

nose >= 1.3.0

推荐,用于运行Theano的测试套件。

Sphinx >= 0.5.1,pygments

用于构建文档。LaTeXdvipng也是必需的,用于将数学符号显示为图像。

pydot-ng

处理大的gif/images图片

NVIDIA CUDA驱动程序和SDK

强烈推荐在NVIDIA gpus上生成/执行GPU代码时需要。参见下面的说明。

libgpuarray

在CUDA和OpenCL设备上生成GPU/cpu代码时需要(参见:GpuArray Backend。)

通过Conda安装的要求的软件包(推荐)

安装Miniconda

按照此链接安装Miniconda。

注意

如果你想要编译的代码更快(推荐),确保你安装了g++(Windows/Linux)或Clang(OS X)。

安装要求的软件包和可选的软件包

conda install numpy scipy mkl <nose> <sphinx> <pydot-ng>
  • <…>之间的参数是可选的。

安装和配置GPU驱动程序(推荐)

警告

现在OpenCL仍然是最小支持

  1. 安装CUDA驱动程序

    • 按照此链接安装CUDA驱动程序和CUDA工具包。
    • 你必须在驱动程序安装后重新启动计算机。
    • 测试在重新启动之后可以正确加载它,从命令行执行命令nvidia-smi

    注意

    正确性检查:bin文件夹应包含nvcc程序。此文件夹称为cuda root目录。

  2. 修复’lib’路径

    • 添加’lib’子目录(如果你有一个64位操作系统,则为“lib64”子目录)到你的$LD_LIBRARY_PATH环境变量。
  3. 设置Theano的配置标志

    要使用GPU,你需要定义cuda root。你可以通过以下方式之一:

    • 定义一个$CUDA_ROOT环境变量等于cuda根目录,如CUDA_ROOT=/path/to/cuda/root,或
    • THEANO_FLAGS添加cuda.root标记,如THEANO_FLAGS='cuda.root=/path/to/cuda/root',或
    • 添加一个[cuda]节到你的.theanorc文件,包含选项root = /path/to/cuda/root

通过Conda安装的要求的软件包(推荐)

安装Miniconda

按照此链接安装Miniconda。

注意

如果你想要编译的代码更快(推荐),确保你安装了g++(Windows/Linux)或Clang(OS X)。

安装要求的软件包和可选的软件包

conda install numpy scipy mkl <nose> <sphinx> <pydot-ng>
  • <…>之间的参数是可选的。

安装Miniconda

按照此链接安装Miniconda。

注意

如果你想要编译的代码更快(推荐),确保你安装了g++(Windows/Linux)或Clang(OS X)。

安装要求的软件包和可选的软件包

conda install numpy scipy mkl <nose> <sphinx> <pydot-ng>
  • <…>之间的参数是可选的。

安装和配置GPU驱动程序(推荐)

警告

现在OpenCL仍然是最小支持

  1. 安装CUDA驱动程序

    • 按照此链接安装CUDA驱动程序和CUDA工具包。
    • 你必须在驱动程序安装后重新启动计算机。
    • 测试在重新启动之后可以正确加载它,从命令行执行命令nvidia-smi

    注意

    正确性检查:bin文件夹应包含nvcc程序。此文件夹称为cuda root目录。

  2. 修复’lib’路径

    • 添加’lib’子目录(如果你有一个64位操作系统,则为“lib64”子目录)到你的$LD_LIBRARY_PATH环境变量。
  3. 设置Theano的配置标志

    要使用GPU,你需要定义cuda root。你可以通过以下方式之一:

    • 定义一个$CUDA_ROOT环境变量等于cuda根目录,如CUDA_ROOT=/path/to/cuda/root,或
    • THEANO_FLAGS添加cuda.root标记,如THEANO_FLAGS='cuda.root=/path/to/cuda/root',或
    • 添加一个[cuda]节到你的.theanorc文件,包含选项root = /path/to/cuda/root

安装

稳定安装

安装最新的稳定版本的Theano:

<sudo> pip install <--user> Theano[test,doc]
  • <…>之间的任何参数都是可选的。
  • 对于root安装,请使用sudo。
  • user用于用户安装,不需要管理员权限。它将Theano安装在你本地的site-packages中。
  • [test]将安装测试需要的包。
  • [doc]将安装生成文档需要的包。

如果你遇到任何问题,请前往Troubleshooting页面

libgpuarray

对于稳定版本的Theano你需要一个特定版本的libgpuarray,标记v-9998。用下面的方式下载:

git clone https://github.com/Theano/libgpuarray.git --tags
git checkout origin/v-9998
cd libgpuarray

然后按照逐步说明进行操作。

安装最前沿版本(推荐)

安装最新、前沿、开发版本的Theano:

<sudo> pip install <--user> <--no-deps> git+https://github.com/Theano/Theano.git#egg=Theano
  • <…>之间的任何参数都是可选的。
  • 对于root安装,请使用sudo。
  • user用于用户安装,不需要管理员权限。它将Theano安装在你本地的site-packages中。
  • 当你不想通过pip安装Theano的依赖关系,请使用no-deps。当它们已经安装成系统的包时,这是很重要的。

如果你遇到任何问题,请前往Troubleshooting页面

libgpuarray

按照逐步说明安装最新的libgpuarray开发版本。

开发人员的安装

安装开发版本的Theano:

git clone git://github.com/Theano/Theano.git
cd Theano
<sudo> pip install <--user> <--no-deps> -e .
  • <…>之间的任何参数都是可选的。
  • 对于root安装,请使用sudo。
  • user用于用户安装,不需要管理员权限。它将Theano安装在你本地的site-packages中。
  • 当你不想通过pip安装Theano的依赖关系,请使用no-deps。当它们已经安装成系统的包时,这是很重要的。
  • -e让你的安装可编辑,即将它链接到你的源目录。

如果你遇到任何问题,请前往Troubleshooting页面

libgpuarray

按照逐步说明安装最新的libgpuarray开发版本。

通过系统包安装先决条件(不推荐)

如果你想通过你的系统包获取需求并在系统范围内安装它们,请按照以下说明进行操作:

对于Ubuntu 16.04与cuda 7.5

sudo apt-get install python-numpy python-scipy python-dev python-pip python-nose g++ libopenblas-dev git
sudo pip install Theano

# cuda 7.5 don't support the default g++ version. Install an supported version and make it the default.
sudo apt-get install g++-4.9

sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-4.9 20
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-5 10

sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-4.9 20
sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-5 10

sudo update-alternatives --install /usr/bin/cc cc /usr/bin/gcc 30
sudo update-alternatives --set cc /usr/bin/gcc

sudo update-alternatives --install /usr/bin/c++ c++ /usr/bin/g++ 30
sudo update-alternatives --set c++ /usr/bin/g++

# Work around a glibc bug
echo -e "\n[nvcc]\nflags=-D_FORCE_INLINES\n" >> ~/.theanorc

对于Ubuntu 11.10到14.04:

sudo apt-get install python-numpy python-scipy python-dev python-pip python-nose g++ libopenblas-dev git

在14.04,这将默认安装Python 2。如果你想使用Python 3:

sudo apt-get install python3-numpy python3-scipy python3-dev python3-pip python3-nose g++ libopenblas-dev git
sudo pip3 install Theano

对于Ubuntu 11.04:

sudo apt-get install python-numpy python-scipy python-dev python-pip python-nose g++ git libatlas3gf-base libatlas-dev

手动Openblas安装(已弃用)

一些较旧的Ubuntu版本中包含的openblas仅限于2个线程。Ubuntu 14.04没有这个限制。如果你想同时使用更多的内核,你需要自己编译。这里是一些代码,将帮助你。

# remove openblas if you installed it
sudo apt-get remove libopenblas-base
# Download the development version of OpenBLAS
git clone git://github.com/xianyi/OpenBLAS
cd OpenBLAS
make FC=gfortran
sudo make PREFIX=/usr/local/ install
# Tell Theano to use OpenBLAS.
# This works only for the current user.
# Each Theano user on that computer should run that line.
echo -e "\n[blas]\nldflags = -lopenblas\n" >> ~/.theanorc

稳定安装

安装最新的稳定版本的Theano:

<sudo> pip install <--user> Theano[test,doc]
  • <…>之间的任何参数都是可选的。
  • 对于root安装,请使用sudo。
  • user用于用户安装,不需要管理员权限。它将Theano安装在你本地的site-packages中。
  • [test]将安装测试需要的包。
  • [doc]将安装生成文档需要的包。

如果你遇到任何问题,请前往Troubleshooting页面

libgpuarray

对于稳定版本的Theano你需要一个特定版本的libgpuarray,标记v-9998。用下面的方式下载:

git clone https://github.com/Theano/libgpuarray.git --tags
git checkout origin/v-9998
cd libgpuarray

然后按照逐步说明进行操作。

libgpuarray

对于稳定版本的Theano你需要一个特定版本的libgpuarray,标记v-9998。用下面的方式下载:

git clone https://github.com/Theano/libgpuarray.git --tags
git checkout origin/v-9998
cd libgpuarray

然后按照逐步说明进行操作。

安装最前沿版本(推荐)

安装最新、前沿、开发版本的Theano:

<sudo> pip install <--user> <--no-deps> git+https://github.com/Theano/Theano.git#egg=Theano
  • <…>之间的任何参数都是可选的。
  • 对于root安装,请使用sudo。
  • user用于用户安装,不需要管理员权限。它将Theano安装在你本地的site-packages中。
  • 当你不想通过pip安装Theano的依赖关系,请使用no-deps。当它们已经安装成系统的包时,这是很重要的。

如果你遇到任何问题,请前往Troubleshooting页面

libgpuarray

按照逐步说明安装最新的libgpuarray开发版本。

libgpuarray

按照逐步说明安装最新的libgpuarray开发版本。

开发人员的安装

安装开发版本的Theano:

git clone git://github.com/Theano/Theano.git
cd Theano
<sudo> pip install <--user> <--no-deps> -e .
  • <…>之间的任何参数都是可选的。
  • 对于root安装,请使用sudo。
  • user用于用户安装,不需要管理员权限。它将Theano安装在你本地的site-packages中。
  • 当你不想通过pip安装Theano的依赖关系,请使用no-deps。当它们已经安装成系统的包时,这是很重要的。
  • -e让你的安装可编辑,即将它链接到你的源目录。

如果你遇到任何问题,请前往Troubleshooting页面

libgpuarray

按照逐步说明安装最新的libgpuarray开发版本。

libgpuarray

按照逐步说明安装最新的libgpuarray开发版本。

通过系统包安装先决条件(不推荐)

如果你想通过你的系统包获取需求并在系统范围内安装它们,请按照以下说明进行操作:

对于Ubuntu 16.04与cuda 7.5

sudo apt-get install python-numpy python-scipy python-dev python-pip python-nose g++ libopenblas-dev git
sudo pip install Theano

# cuda 7.5 don't support the default g++ version. Install an supported version and make it the default.
sudo apt-get install g++-4.9

sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-4.9 20
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-5 10

sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-4.9 20
sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-5 10

sudo update-alternatives --install /usr/bin/cc cc /usr/bin/gcc 30
sudo update-alternatives --set cc /usr/bin/gcc

sudo update-alternatives --install /usr/bin/c++ c++ /usr/bin/g++ 30
sudo update-alternatives --set c++ /usr/bin/g++

# Work around a glibc bug
echo -e "\n[nvcc]\nflags=-D_FORCE_INLINES\n" >> ~/.theanorc

对于Ubuntu 11.10到14.04:

sudo apt-get install python-numpy python-scipy python-dev python-pip python-nose g++ libopenblas-dev git

在14.04,这将默认安装Python 2。如果你想使用Python 3:

sudo apt-get install python3-numpy python3-scipy python3-dev python3-pip python3-nose g++ libopenblas-dev git
sudo pip3 install Theano

对于Ubuntu 11.04:

sudo apt-get install python-numpy python-scipy python-dev python-pip python-nose g++ git libatlas3gf-base libatlas-dev

手动Openblas安装(已弃用)

一些较旧的Ubuntu版本中包含的openblas仅限于2个线程。Ubuntu 14.04没有这个限制。如果你想同时使用更多的内核,你需要自己编译。这里是一些代码,将帮助你。

# remove openblas if you installed it
sudo apt-get remove libopenblas-base
# Download the development version of OpenBLAS
git clone git://github.com/xianyi/OpenBLAS
cd OpenBLAS
make FC=gfortran
sudo make PREFIX=/usr/local/ install
# Tell Theano to use OpenBLAS.
# This works only for the current user.
# Each Theano user on that computer should run that line.
echo -e "\n[blas]\nldflags = -lopenblas\n" >> ~/.theanorc
原文链接:https://www.f2er.com/ubuntu/354613.html

猜你在找的Ubuntu相关文章