ubuntu安装spark2.1 hadoop2.7.3集群

前端之家收集整理的这篇文章主要介绍了ubuntu安装spark2.1 hadoop2.7.3集群前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。

0: 设置系统登录相关

Master要执行

cat$HOME/.ssh/id_rsa.pub>>$HOME/.ssh/authorized_keys

如果用root用户

sed-ri's/^(PermitRootLogin).*$/\1yes/'/etc/ssh/sshd_config

编辑/etc/hosts

127.0.0.1localhost#别把spark1放在这
192.168.100.25spark1#spark1isMaster
192.168.100.26spark2
192.168.100.27spark3

127.0.1.1ubuntu

#ThefollowinglinesaredesirableforIPv6capablehosts
::1localhostip6-localhostip6-loopback
ff02::1ip6-allnodes
ff02::2ip6-allrouters

如果把 spark1 放在/etc/hosts第一行,会发现在slave 有下面的错误

org.apache.hadoop.ipc.Client:Retryingconnecttoserver:spark1/192.168.100.25:9000.Alreadytried0time(s)

然后在spark1 运行

ss-lnt
LISTEN0128localhost:9000

会发现监听的是本地. 删除 hosts中的相关文本重新启动hadoop,解决问题



1: 安装java

可以直接apt-get

apt-getinstallpython-software-properties-y
add-apt-repositoryppa:webupd8team/java
apt-getupdate
apt-getinstalloracle-java7-installer

或者下载

wgethttp://download.oracle.com/otn-pub/java/jdk/7u80-b15/jdk-7u80-linux-x64.tar.gz
mkdir/usr/lib/jvm
tarxvfjdk-7u80-linux-x64.tar.gz
mvjdk1.7.0_80/usr/lib/jvm
#配置相关路径
update-alternatives--install"/usr/bin/java""java""/usr/lib/jvm/jdk1.7.0_80/bin/java"1
update-alternatives--install"/usr/bin/javac""javac""/usr/lib/jvm/jdk1.7.0_80/bin/javac"1
update-alternatives--install"/usr/bin/javaws""javaws""/usr/lib/jvm/jdk1.7.0_80/bin/javaws"1
update-alternatives--configjava
#验证一下
java-version
javac-version
javaws-version

添加环境变量

cat>>/etc/profile<<EOF
exportJAVA_HOME=/usr/lib/jvm/jdk1.7.0_80
exportJRE_HOME=/usr/lib/jvm/jdk1.7.0_80/jre
exportCLASSPATH=.:$CLASSPATH:$JAVA_HOME/lib:$JRE_HOME/lib
exportPATH=$PATH:$JAVA_HOME/bin:$JRE_HOME/bin
EOF


2: 安装 hadoop

tarxvfhadoop-2.7.3.tar.gz
mvhadoop-2.7.3/usr/local/hadoop
cd/usr/local/hadoop
mkdir-phdfs/{data,name,tmp}

添加环境变量

cat>>/etc/profile<<EOF
exportHADOOP_HOME=/usr/local/hadoop
exportPATH=$PATH:$HADOOP_HOME/bin
EOF

编辑 hadoop-env.sh 文件

exportJAVA_HOME=/usr/lib/jvm/jdk1.7.0_80#只改了这一行

编辑 core-site.xml 文件

<configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://spark1:9000</value>
</property>
<property>
<name>hadoop.tmp.dir</name>
<value>/usr/local/hadoop/hdfs/tmp</value>
</property>
</configuration>

编辑hdfs-site.xml 文件

<configuration>
<property>
<name>dfs.namenode.name.dir</name>
<value>/usr/local/hadoop/hdfs/name</value>
</property>
<property>
<name>dfs.datanode.data.dir</name>
<value>/usr/local/hadoop/hdfs/data</value>
</property>
<property>
<name>dfs.replication</name>
<value>3</value>
</property>
</configuration>

编辑mapred-site.xml 文件

<configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
</configuration>

编辑yarn-site.xml 文件

<configuration>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.resourcemanager.hostname</name>
<value>spark1</value>
</property>
<!--property>
别添加这个属性,添加了可能出现下面的错误:
Problembindingto[spark1:0]java.net.BindException:Cannotassignrequestedaddress
<name>yarn.nodemanager.hostname</name>
<value>spark1</value>
</property-->
</configuration>

上面相关文件的具体属性及值在官网查询:

https://hadoop.apache.org/docs/r2.7.3/

编辑masters 文件

echospark1>masters

编辑 slaves 文件

spark1
spark2
spark3

安装好后,使用rsync 把相关目录及/etc/profile同步过去即可

启动hadoop dfs

./sbin/start-dfs.sh

初始化文件系统

hadoopnamenode-format

启动 yarn

./sbin/start-yarn.sh

检查spark1相关进程

root@spark1:/usr/local/spark/conf#jps
1699NameNode
8856Jps
2023SecondaryNameNode
2344NodeManager
1828Datanode
2212ResourceManager

spark2 spark3 也要类似下面的运程

root@spark2:/tmp#jps
3238Jps
1507Datanode
1645NodeManager

可以打开web页面查看

http://192.168.100.25:50070

测试hadoop

hadoopfs-mkdir/testin
hadoopfs-put~/str.txt/testin
cd/usr/local/hadoop
hadoopjar./share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.3.jarwordcount/testin/str.txttestout

结果如下:

hadoopjar./share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.3.jarwordcount/testin/str.txttestout
17/02/2411:20:59INFOclient.RMProxy:ConnectingtoResourceManageratspark1/192.168.100.25:8032
17/02/2411:21:01INFOinput.FileInputFormat:Totalinputpathstoprocess:1
17/02/2411:21:01INFOmapreduce.JobSubmitter:numberofsplits:1
17/02/2411:21:02INFOmapreduce.JobSubmitter:Submittingtokensforjob:job_1487839487040_0002
17/02/2411:21:06INFOimpl.YarnClientImpl:Submittedapplicationapplication_1487839487040_0002
17/02/2411:21:06INFOmapreduce.Job:Theurltotrackthejob:http://spark1:8088/proxy/application_1487839487040_0002/
17/02/2411:21:06INFOmapreduce.Job:Runningjob:job_1487839487040_0002
17/02/2411:21:28INFOmapreduce.Job:Jobjob_1487839487040_0002runninginubermode:false
17/02/2411:21:28INFOmapreduce.Job:map0%reduce0%
17/02/2411:22:00INFOmapreduce.Job:map100%reduce0%
17/02/2411:22:15INFOmapreduce.Job:map100%reduce100%
17/02/2411:22:17INFOmapreduce.Job:Jobjob_1487839487040_0002completedsuccessfully
17/02/2411:22:17INFOmapreduce.Job:Counters:49
FileSystemCounters
FILE:Numberofbytesread=212115
FILE:Numberofbyteswritten=661449
FILE:Numberofreadoperations=0
FILE:Numberoflargereadoperations=0
FILE:Numberofwriteoperations=0
HDFS:Numberofbytesread=377966
HDFS:Numberofbyteswritten=154893
HDFS:Numberofreadoperations=6
HDFS:Numberoflargereadoperations=0
HDFS:Numberofwriteoperations=2
JobCounters
Launchedmaptasks=1
Launchedreducetasks=1
Data-localmaptasks=1
Totaltimespentbyallmapsinoccupiedslots(ms)=23275
Totaltimespentbyallreducesinoccupiedslots(ms)=11670
Totaltimespentbyallmaptasks(ms)=23275
Totaltimespentbyallreducetasks(ms)=11670
Totalvcore-millisecondstakenbyallmaptasks=23275
Totalvcore-millisecondstakenbyallreducetasks=11670
Totalmegabyte-millisecondstakenbyallmaptasks=23833600
Totalmegabyte-millisecondstakenbyallreducetasks=11950080
Map-ReduceFramework
Mapinputrecords=1635
Mapoutputrecords=63958
Mapoutputbytes=633105
Mapoutputmaterializedbytes=212115
Inputsplitbytes=98
Combineinputrecords=63958
Combineoutputrecords=14478
Reduceinputgroups=14478
Reduceshufflebytes=212115
Reduceinputrecords=14478
Reduceoutputrecords=14478
SpilledRecords=28956
ShuffledMaps=1
FailedShuffles=0
MergedMapoutputs=1
GCtimeelapsed(ms)=429
cputimespent(ms)=10770
Physicalmemory(bytes)snapshot=455565312
Virtualmemory(bytes)snapshot=1391718400
Totalcommittedheapusage(bytes)=277348352
ShuffleErrors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
FileInputFormatCounters
BytesRead=377868
FileOutputFormatCounters
BytesWritten=154893


3: 安装 scala

tarxvfscala-2.11.8.tgz
mvscala-2.11.8/usr/local/scala

添加环境变量

cat>>/etc/profile<<EOF
exportSCALA_HOME=/usr/local/scala
exportPATH=$PATH:$SCALA_HOME/bin
EOF

测试

source/etc/profile
scala-version
Scalacoderunnerversion2.11.8--Copyright2002-2016,LAMP/EPFL


4: 安装 spark

tarxvfspark-2.1.0-bin-hadoop2.7.tgz
mvspark-2.1.0-bin-hadoop2.7/usr/local/spark

添加环境变量

cat>>/etc/profile<<EOF
exportSPARK_HOME=/usr/local/spark
exportPATH=$PATH:$SPARK_HOME/bin
exportLD_LIBRARY_PATH=$HADOOP_HOME/lib/native
EOF
exportLD_LIBRARY_PATH=$HADOOP_HOME/lib/native
#这一条不添加的话在运行spark-shell时会出现下面的错误
NativeCodeLoader:Unabletoloadnative-hadooplibraryforyourplatform...usingbuiltin-javaclasseswhereapplicable

编辑 spark-env.sh

SPARK_MASTER_HOST=spark1
HADOOP_CONF_DIR=/usr/locad/hadoop/etc/hadoop

编辑 slaves

spark1
spark2
spark3

启动 spark

./sbin/start-all.sh

此时在spark1上运行jps应该如下,多了 Master 和 Worker

root@spark1:/usr/local/spark/conf#jps
1699NameNode
8856Jps
7774Master
2023SecondaryNameNode
7871Worker
2344NodeManager
1828Datanode
2212ResourceManager

spark2 和 spark3 则多了 Worker

root@spark2:/tmp#jps
3238Jps
1507Datanode
1645NodeManager
3123Worker

可以打开web页面查看

http://192.168.100.25:8080/

运行 spark-shell

root@spark1:/usr/local/spark/conf#spark-shell
UsingSpark'sdefaultlog4jprofile:org/apache/spark/log4j-defaults.properties
Settingdefaultloglevelto"WARN".
Toadjustlogginglevelusesc.setLogLevel(newLevel).ForSparkR,usesetLogLevel(newLevel).
17/02/2411:55:46WARNSparkContext:SupportforJava7isdeprecatedasofSpark2.0.0
17/02/2411:56:17WARNObjectStore:Failedtogetdatabaseglobal_temp,returningNoSuchObjectException
SparkcontextWebUIavailableathttp://192.168.100.25:4040
Sparkcontextavailableas'sc'(master=local[*],appid=local-1487908553475).
Sparksessionavailableas'spark'.
Welcometo
______
/__/__________//__
_\\/_\/_`/__/'_/
/___/.__/\_,_/_//_/\_\version2.1.0
/_/

UsingScalaversion2.11.8(JavaHotSpot(TM)64-BitServerVM,Java1.7.0_80)
Typeinexpressionstohavethemevaluated.
Type:helpformoreinformation.

scala>:help

此时可以打开spark 查看

http://192.168.100.25:4040/environment/


至此完成.

猜你在找的Ubuntu相关文章