Caffe+Ubuntu14.04+CUDA7.5安装笔记

前端之家收集整理的这篇文章主要介绍了Caffe+Ubuntu14.04+CUDA7.5安装笔记前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。

ubuntu 14.04安装



cuda7.5安装

  1. cuda7.5下载:地址https://developer.nvidia.com/cuda-downloads
    文件: cuda_7.5.18_linux.run
  2. 登录界面前按Ctrl+Alt+F1进入命令提示符 【禁用nouveau驱动】
  3. 执行命令: sudo vi /etc/modprobe.d/blacklist-nouveau.conf
  4. 输入以下内容

    blacklist nouveau
    options nouveau modset=0

    最后保存退出(:wq)

  5. 执行命令: sudo update-initramfs -u
    再执行命令: lspci | grep nouveau 查看是否有内容
    如果没有内容 ,说明禁用成功,如果有内容,就重启一下再查看
    sudo reboot
    重启后,进入登录界面的时候,不要登录进入桌面,直接按Ctrl+Alt+F1进入命令提示符。

  6. 重启后,登录界面时直接按Ctrl+Alt+F1进入命令提示

  7. 安装依赖项:
    sudo service lightdm stop
    sudo apt-get install g++
    sudo apt-get installGit
    sudo apt-get install freeglut3-dev

  8. 假设cuda_7.5.18_linux.run位于 ~ 目录,切换到~目录: cd ~

  9. 执行命令: sudo sh cude_7.5.18_linux.run

  10. 安装的时候,要让你先看一堆文字(EULA),我们直接不停的按空格键到100%,然后输入一堆accept,yes,yes或回车进行安装。安装完成后,重启,然后用ls查看一下:
    ls /dev/nvidia*
    会看到/dev目录下生成多个nvidia开头文件(夹)
    或者输入命令: sudo nvcc –version 会显示类似以下信息

       
       
    • 1
    • 2
    • 3
    • 4
    • 5
    • 1
    • 2
    • 3
    • 4
    • 5
    dl@dl-Z170X-Gaming-3:~$ nvcc --version nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2015 NVIDIA Corporation Built on Tue_Aug_11_14:2732_CDT_2015 Cuda compilation tools,release 7.5,V7.5.17
  11. 配置环境变量
    执行命令: sudo vi /etc/profile
    文件底部添加以下内容

       
       
    • 1
    • 2
    • 1
    • 2
    export PATH=/usr/local/cuda-7.5/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda-7.5/lib64:$LD_LIBRARY_PATH//注意这里的问题lib64而不是lib
  12. 编译samples
    安装成功后在~目录下可以看到一个NVIDIA_CUDA-7.5_Samples文件夹,切换到目录
    输入sudo make, 大概等个十多分钟后就会把全部的samples编译完毕。生成的可执行文件位于
    NVIDIA_CUDA-7.5_Samples/bin/x86_64/Linux/release 目录下
    比如运行 ./nbody可以看到以下demo


cuda安装过程中遇到的问题

Q1

  1. 在执行命令: sudo apt-get install g++ 时出现以下错误
    g++ : Depends: g++-4.8 (>= 4.8.2-5~) but it is not going to be installed
  2. 是因为ubuntu 14.04的源过旧或不可访问导致,可以通过更新源解决

  3. 首先,备份原始源文件source.list
    sudo cp /etc/apt/sources.list /etc/apt/sources.list_backup

  4. 然后
    sudo gedit /etc/apt/source.list
    文件尾部添加以下内容

        
        
  5. 1
  6. 2
  7. 3
  8. 4
  9. 5
  10. 6
  11. 7
  12. 8
  13. 9
  14. 10
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    deb http://archive.ubuntu.com/ubuntu/ trusty main restricted universe multiverse deb http://archive.com/ubuntu/ trusty-security main restricted universe multiverse deb http://archive.com/ubuntu/ trusty-updates main restricted universe multiverse deb http://archive.com/ubuntu/ trusty-proposed main restricted universe multiverse deb http://archive.com/ubuntu/ trusty-backports main restricted universe multiverse deb-src http://archive.com/ubuntu/ trusty main restricted universe multiverse deb-src http://archive.com/ubuntu/ trusty-security main restricted universe multiverse deb-src http://archive.com/ubuntu/ trusty-updates main restricted universe multiverse deb-src http://archive.com/ubuntu/ trusty-proposed main restricted universe multiverse deb-src http://archive.com/ubuntu/ trusty-backports main restricted universe multiverse
  15. 最后 sudo apt-get update

Q2

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
W: GPG 错误:http://archive.ubuntukylin.com:10006/ubuntukylin xenial InRelease: 由于没有公钥,无法验证下列签名: NO_PUBKEY 8D5A09DC9B929006 W: 仓库 “http://archive10006/ubuntukylin xenial InRelease” 没有数字签名。 N: 无法认证来自该源的数据,所以使用它会带来潜在风险。 N: 参见 apt-secure(8) 手册以了解仓库创建和用户配置方面的细节。 W: 以下 ID 的密钥没有可用的公钥: 8D5A09DC9B929006

solution:

  
  
  • 1
  • 2
    • 1
    • 2
    sudo apt-key adv -keyserver keyserver.ubuntucom recvkeys 8D5A09DC9B929006

    注意最后的一串密钥就是报错信息里的,每个人的不一样


    @H_301_409@ 安装caffe
    1. 下载caffe:执行命令: sudo git clonehttps://github.com/BVLC/caffe.git
    2. 安装依赖项:

      sudo apt-get install libatlas-base-dev
      sudo apt-get install libprotobuf-dev
      sudo apt-get install libleveldb-dev
      sudo apt-get install libsnappy-dev
      sudo apt-get install libopencv-dev
      sudo apt-get install libboost-all-dev
      sudo apt-get install libhdf5-serial-dev
      sudo apt-get install libgflags-dev
      sudo apt-get install libgoogle-glog-dev
      sudo apt-get install liblmdb-dev
      sudo apt-get install protobuf-compiler

    3. 编译caffe
      cd ~/caffe
      sudo cp Makefile.config.example Makefile.config
      make all

    4. 配置运行环境
      sudo vi /etc/ld.so.conf.d/caffe.conf
      添加内容
      /usr/local/cuda/lib64

    5. 更新配置
      sudo ldconfig
    6. caffe测试,执行以下命令:
      cd ~/caffe
      sudo sh data/mnist/get_mnist.sh
      sudo sh examples/mnist/create_mnist.sh
      最后测试:
      sudo sh examples/mnist/train_lenet.sh

    运行结果如下:


    其他依赖项

    我们查看caffe目录下 Makefile.config 内容如下:

      
      
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    ## Refer to http://caffe.berkeleyvision.org/installation.html # Contributions simplifying and improving our build system are welcome! # cuDNN acceleration switch (uncomment to build with cuDNN). USE_CUDNN := 1 # cpu-only switch (uncomment to build without GPU support). # cpu_ONLY := 1 # uncomment to disable IO dependencies and corresponding data layers # USE_OPENCV := 0 # USE_LEVELDB := 0 # USE_LMDB := 0 # uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary) # You should not set this flag if you will be reading LMDBs with any # possibility of simultaneous read and write # ALLOW_LMDB_NOLOCK := 1 # Uncomment if you're using OpenCV 3 OPENCV_VERSION := 3 # To customize your choice of compiler,uncomment and set the following. # N.B. the default for Linux is g++ and the default for OSX is clang++ # CUSTOM_CXX := g++ # CUDA directory contains bin/ and lib/ directories that we need. CUDA_DIR := /usr/local/cuda # On Ubuntu 14.04,if cuda tools are installed via # "sudo apt-get install nvidia-cuda-toolkit" then use this instead: # CUDA_DIR := /usr # CUDA architecture setting: going with all of them. # For CUDA < 6.0,comment the *_50 lines for compatibility. CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \ -gencode arch=compute_20,code=sm_21 \ -gencode arch=compute_30,code=sm_30 \ -gencode arch=compute_35,code=sm_35 \ -gencode arch=compute_50,code=sm_50 \ -gencode arch=compute_50,code=compute_50 # BLAS choice: # atlas for ATLAS (default) # mkl for MKL # open for OpenBlas BLAS := mkl # Custom (MKL/ATLAS/OpenBLAS) include and lib directories. # Leave commented to accept the defaults for your choice of BLAS # (which should work)! # BLAS_INCLUDE := /path/to/your/blas # BLAS_LIB := /path/to/your/blas # Homebrew puts openblas in a directory that is not on the standard search path # BLAS_INCLUDE := $(shell brew --prefix openblas)/include # BLAS_LIB := $(shell brew --prefix openblas)/lib # This is required only if you will compile the matlab interface. # MATLAB directory should contain the mex binary in /bin. # MATLAB_DIR := /usr/local # MATLAB_DIR := /Applications/MATLAB_R2012b.app # NOTE: this is required only if you will compile the python interface. # We need to be able to find Python.h and numpy/arrayobject.h. PYTHON_INCLUDE := /usr/include/python2.7 \ /usr/lib/python2.7/dist-packages/numpy/core/include # Anaconda Python distribution is quite popular. Include path: # Verify anaconda location,sometimes it's in root. # ANACONDA_HOME := $(HOME)/anaconda # PYTHON_INCLUDE := $(ANACONDA_HOME)/include \ # $(ANACONDA_HOME)/include/python2.7 \ # $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include \ # Uncomment to use Python 3 (default is Python 2) # PYTHON_LIBRARIES := boost_python3 python3.5m # PYTHON_INCLUDE := /usr/include/python3.5m \ # /usr/lib/python3.5/dist-packages/numpy/core/include # We need to be able to find libpythonX.X.so or .dylib. PYTHON_LIB := /usr/lib # PYTHON_LIB := $(ANACONDA_HOME)/lib # Homebrew installs numpy in a non standard path (keg only) # PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include # PYTHON_LIB += $(shell brew --prefix numpy)/lib # Uncomment to support layers written in Python (will link against Python libs) # WITH_PYTHON_LAYER := 1 # Whatever else you find you need goes here. INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib # If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies # INCLUDE_DIRS += $(shell brew --prefix)/include # LIBRARY_DIRS += $(shell brew --prefix)/lib # Uncomment to use `pkg-config` to specify OpenCV library paths. # (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.) # USE_PKG_CONFIG := 1 BUILD_DIR := build DISTRIBUTE_DIR := distribute # Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171 # DEBUG := 1 # The ID of the GPU that 'make runtest' will use to run unit tests. TEST_GPUID := 0 # enable pretty build (comment to see full commands) Q ?= @

    可以看到诸如

      
      
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    # cuDNN acceleration switch (uncomment to build with cuDNN). # USE_CUDNN := 1 # Uncomment if you're using OpenCV 3 # OPENCV_VERSION := 3 # open for OpenBlas BLAS := atlas

    都是使用默认的设置,我们可以安装其他依赖项提高caffe运行效率


    opencv3.0安装

    1. github上有人写好完整的运行脚本自动下载OpenCV,编译,安装,配置等

    2. Caffe + Ubuntu 15.04 + CUDA 7.5 新手安装配置指南作者 Xin-Yu Ou(欧新宇) 可以到他的网盘中下载
      PS:为了方便大家使用,我提供一个百度云盘,用于分享部分安装过程中需要用到的软件包和链接地址(所有软件包仅供学术交流使用,请大家尽量去官网下载。)。百度云盘链接:http://pan.baidu.com/s/1qX1uFHa密码:wysa

    3. 在Install-OpenCV-master文件夹中包含安装各个版本opencv脚本

    4. 切换到目录执行:
      sudo sh Ubuntu/dependencies.sh
      安装依赖项

    5. 执行opencv3.0安装脚本
      sudo sh Ubuntu/3.0/opencv3_0_0.sh
      等待安装完成即可

    6. 修改Makefile.config

          
          
    7. 1
    8. 2
    9. 3
    10. 4
      • 1
      • 2
      • 3
      • 4
      # Uncomment if you're using OpenCV 3 OPENCV_VERSION := 3
    11. (可选)opencv3.1已经发布,如果要安装最新的opencv3.1,我们可以先执行
      sudo sh get_latest_version_download_file.sh
      获取最新的地址,然后更新opencv3_0_0.sh中的下载地址,同时需要修正文件名等

          
          
    12. 1
    13. 2
    14. 3
    15. 4
    16. 5
    17. 6
    18. 7
    19. 8
    20. 9
    21. 10
    22. 11
    23. 12
    24. 13
    25. 14
    26. 15
    27. 16
    28. 17
    29. 18
    30. 19
    31. 20
    32. 21
    33. 22
    34. 23
    35. 24
    36. 25
    37. 26
    38. 27
    39. 28
    40. 29
    41. 30
    42. 31
    43. 32
    44. 33
    45. 34
    46. 35
      • 1
      • 2
      • 3
      • 4
      • 5
      • 6
      • 7
      • 8
      • 9
      • 10
      • 11
      • 12
      • 13
      • 14
      • 15
      • 16
      • 17
      • 18
      • 19
      • 20
      • 21
      • 22
      • 23
      • 24
      • 25
      • 26
      • 27
      • 28
      • 29
      • 30
      • 31
      • 32
      • 33
      • 34
      • 35
      arch=$(uname -m) if [ "$arch" == "i686" -o "i386" -o "i486" -o "i586" ]; then flag=1 else flag=0 fi echo "Installing OpenCV 3.0.0" mkdir OpenCV cd OpenCV "Removing any pre-installed ffmpeg and x264" sudo apt-get -y remove ffmpeg x264 libx264-dev "Installing Dependenices" sudo apt-get -y install libopencv-dev sudo apt-get -y install build-essential checkinstall cmake pkg-config yasm sudo apt-get -y install libtiff4-dev libjpeg-dev libjasper-dev sudo apt-get -y install libavcodec-dev libavformat-dev libswscale-dev libdc1394-22-dev libxine-dev libgstreamer0.10-dev libgstreamer-plugins-base0.10-dev libv4l-dev sudo apt-get -y install python-dev python-numpy sudo apt-get -y install libtbb-dev sudo apt-get -y install libqt4-dev libgtk2.0-dev sudo apt-get -y install libfaac-dev libmp3lame-dev libopencore-amrnb-dev libopencore-amrwb-dev libtheora-dev libvorbis-dev libxvidcore-dev sudo apt-get -y install x264 v4l-utils ffmpeg sudo apt-get -y install libgtk2."Downloading OpenCV 3.0.0" wget -O opencv-3.0.0.zip http://sourceforge.net/projects/opencvlibrary/files/opencv-unix/0/opencv-0.zip/download "Installing OpenCV 3.0.0" unzip opencv-0.zip cd opencv-0 mkdir build cd build cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local -D WITH_TBB=ON -D BUILD_NEW_PYTHON_SUPPORT=ON -D WITH_V4L=ON -D INSTALL_C_EXAMPLES=ON -D INSTALL_PYTHON_EXAMPLES=ON -D BUILD_EXAMPLES=ON -D WITH_QT=ON -D WITH_OPENGL=ON .. make -j8 sudo make install sudo sh -c 'echo "/usr/local/lib" > /etc/ld.so.conf.d/opencv.conf' sudo ldconfig "OpenCV 3.0.0 ready to be used"

    安装opencv3遇到的问题

    1. 在执行
      sudo sh Ubuntu/3.0/opencv3_0_0.sh
      出现有个地方一直卡住了,显示在下载一个文件: ippicv_linux_20141027.tgz
      因为墙的原因,这个文件无法下载下来
    2. [其他文档] ippicv_linux_20141027.tgz处下载文件 ippicv_linux_20141027.tgz

    3. 下载后拷贝到opencv/3rdparty/ippicv/downloads/linux-8b449a536a2157bcad08a2b9f266828b/ 目录下即

    4. http://stackoverflow.com/questions/25726768/opencv-3-0-trouble-with-installation

    安装BLAS——选择MKL

    1. 首先下载 MKL(Intel(R) Parallel Studio XE Cluster Edition for Linux 2016)
      网址:https://software.intel.com/en-us/intel-education-offerings
      Caffe + Ubuntu 15.04 + CUDA 7.5 新手安装配置指南作者 Xin-Yu Ou(欧新宇) 可以到他的网盘中下载, 需要自己申请序列号
    2. 下载完成后: parallel_studio_xe_2016.tgz

    3. 执行以下命令:
      $ tar zxvf parallel_studio_xe_2016.tar.gz

      $ chmod a+x parallel_studio_xe_2016 -R

      $ sh install_GUI.sh

    4. 环境配置:
      $ sudo gedit /etc/ld.so.conf.d/intel_mkl.conf
      然后添加以下内容

      /opt/intel/lib/intel64
      /opt/intel/mkl/lib/intel64

      配置生效: sudo ldconfig -v
      安装MKL完成

    5. 修改Makefile.config

          
          
    6. 1
    7. 2
    8. 3
    9. 4
    10. 5
    11. # BLAS choice: # atlas for ATLAS (default) # mkl for MKL # open for OpenBlas BLAS := mkl

    cuDNN安装

    1. cudnn下载
      下载地址:https://developer.nvidia.com/cudnn
      或者到网盘:http://pan.baidu.com/s/1bnOKBO下载
      下载相应文件cudnn-7.0-linux-x64-v4.0-rc.tgz,放到~根目录下

    2. 切换到~目录,执行命令

          
          
    3. 1
    4. 2
    5. 3
    6. 4
    7. 5
    8. 6
    9. 7
    10. 8
    11. 9
    12. 10
    13. sudo tar xvf cudnn-7.0-linux-x64-v4.0-rc.tgz cd cuda/include sudo cp *.h /usr/local/include/ cd ../lib64 sudo cp lib* /usr/local/lib/ cd /usr/local/lib sudo chmod +r libcudnn.so.4.0.4 sudo ln -sf libcudnn.so.4 libcudnn.so.4 libcudnn.so sudo ldconfig
    14. 修改Makefile.config

          
          
    15. 1
    16. 2
    17. 3
    18. 4
    19. # cuDNN acceleration switch (uncomment to build with cuDNN). USE_CUDNN := 1

    cudnn版本问题

    在make工程的时候出现以下错误

      
      
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    ... NVCC src/caffe/layers/deconv_layer.cu NVCC src/caffe/layers/cudnn_conv_layer.cu src/caffe/layers/cudnn_conv_layer.cu(81): error: argument of type "cudnnAddMode_t" is incompatible with parameter of type "const void *" detected during instantiation of "void caffe::CuDNNConvolutionLayer<Dtype>::Forward_gpu(const std::vector<caffe::Blob<Dtype> *,std::allocator<caffe::Blob<Dtype> *>> &,const std::vector<caffe::Blob<Dtype> *,std::allocator<caffe::Blob<Dtype> *>> &) [with Dtype=float]" (157): here ... 20 errors detected in the compilation of "/tmp/tmpxft_00002703_00000000-16_cudnn_conv_layer.compute_50.cpp1.ii". make: *** [.build_release/cuda/src/caffe/layers/cudnn_conv_layer.o] Error 1 make: *** Waiting for unfinished jobs....

    解决方案:

    更换V3版本cudnnCaffe 工程的一些编译错误以及解决方案

      
      
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    $ cd lib64/ $ sudo cp lib* /usr/local/cuda/lib64/ $ cd ../include/ $ sudo cp cudnn.h /usr/local/cuda/$ cd /usr/local/cuda/lib64/ $ sudo rm -r libcudnn.so libcudnn.so.7.0 $ sudo ln -sf libcudnn.so.7.0.64 libcudnn.so.7.0 libcudnn.so $ sudo ldconfig

    重新编译测试caffe

    1. 编译

      sudo make clean
      sudo make all

    2. sample测试: ( 比不使用cudnn快很多)
      sh data/mnist/get_mnist.sh
      sh examples/mnist/create_mnist.sh

    3. 我们可以将迭代次数增加到50000次
      sudo gedit examples/mnist/lenet_solver.prototxt
      修改max_iter: 50000
      最后:
      sh examples/mnist/train_lenet.sh


    编译Python接口


    依赖项

      
      
  • 1
    • 1
    sudo apt-get install -y python-numpy python-scipy python-matplotlib python-sklearn python-skimage python-h5py python-protobuf python-leveldb python-networkx python-nose python-pandas python-gflags cython ipython
      
      
  • 1
  • 2
  • 3
  • 4
    • 1
    • 2
    • 3
    • 4
    sudo vi ~/.bashrc 添加export PYTHONPATH=/home/dl/caffe/python:$PYTHONPATH sudo make pycaffe -j8

    编译matlab接口

    1. 安装matlab2014
      sh /usr/local/MATLAB/R2014a/bin/matlab
    2. Makefile.config 中修改 : MATLAB_DIR := /usr/local/MATLAB/R2014a
    3. sudo make matcaffe -j8

    其他

    1. Vi编辑命令常用vi编辑器命令行
      
      
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    A:当前行的尾部追加内容 i:游标前插入内容 I:游标后插入内容 o:在鼠标所在行的下面添加内容 O:在鼠标所在行的上面添加内容 ESC:退出编辑模式 Ctrl-T:移动到下一个tab Backspace:向后移动一个字符 Ctrl-U:删除当前 cw:删除游标所在的字符,然后进入编辑模式 cc:删除游标所在的行,然后进入编辑模式 C:删除从游标所在的位置到行尾的字符,然后进入编辑模式 dd:删除当前行 ndd:删除第n行 D:删除当前行游标所在的位置后面的字符 dw:删除邮编所在的字符 d}:删除当前段剩余的字符 d^:删除游标前到行首的字符 c/pat:删除游标后面到第一次匹配字符间的内容 dn:删除游标后面到下一个匹配字符间的内容 dfa:删除当前行游标到匹配字符间的内容(匹配的字符也将被删) dta:删除当前行游标到匹配字符间的内容(匹配的字符不被删) dL:删除从游标到屏幕的最后一行之间的内容 dG:删除从游标到文件末尾之间的内容 J:连结上下两行的内容 p:在游标后面插入buffer中的内容 P:在游标前面插入buffer中的内容 rx:用x替换字符 Rtext:用text从游标开始处进行替换 u:撤销最后的改变 U:还原当前行的内容 x:向后删除游标所在位置的字符 X:向前删除游标前面的字符 nX:删除前面的n个字符,游标所在的字符将不会被删 .:还原最后的改变 ~:反转字母的大小写 y:拷贝当前行到新的buffer yy:拷贝当前行 "xyy:拷贝当前行的buffer名为x的buffer ye:拷贝当单词的末尾

    1. 搜狗输入法安装
      Ubuntu14.04安装搜狗输入法

    2. im-config 然后 ibus选取fcitx

    3. fcitx-config-gtk3


    参考资料

    1. Caffe学习系列(1):安装配置ubuntu14.04+cuda7.5+caffe+cudnn
    2. Caffe + Ubuntu 15.04 + CUDA 7.5 新手安装配置指南
    3. ubuntu 14.04 install g++问题"g++:Depends:g++-4.8(>= 4.8.2-5
    4. ippicv_linux_20141027.tgz
    5. http://stackoverflow.com/questions/25726768/opencv-3-0-trouble-with-installation
    原文链接:https://www.f2er.com/ubuntu/353492.html

    猜你在找的Ubuntu相关文章