以下内容作者为董淳光 非常感谢他为我们提供的学习资料
前序
sqlite3 的确很好用。小巧、速度快。但是因为非微软的产品,帮助文档总觉得不
够。这些天再次研究它,又有一些收获,这里把我对 sqlite3 的研究列出来,以
备忘记。
这里要注明,我是一个跨平台专注者,并不喜欢只用 windows 平台。我以前的工
作就是为 unix 平台写代码。下面我所写的东西,虽然没有验证,但是我已尽量不
使用任何 windows 的东西,只使用标准 C 或标准C++。但是,我没有尝试过在别
的系统、别的编译器下编译,因此下面的叙述如果不正确,则留待以后修改。
下面我的代码仍然用 VC 编写,因为我觉得VC是一个很不错的IDE,可以加快代码
编写速度(例如配合Vassist )。下面我所说的编译环境,是VC2003。如果读者
觉得自己习惯于 unix 下用 vi 编写代码速度较快,可以不用管我的说明,只需要
符合自己习惯即可,因为我用的是标准 C 或 C++ 。不会给任何人带来不便。
一、版本
从www.sqlite.org <http://www.sqlite.org/> 网站可下载到最新的 sqlite 代
码和编译版本。我写此文章时,最新代码是 3.3.17 版本。
很久没有去下载 sqlite新代码,因此也不知道sqlite 变化这么大。以前很多文
件,现在全部合并成一个sqlite3.c 文件。如果单独用此文件,是挺好的,省去
拷贝一堆文件还担心有没有遗漏。但是也带来一个问题:此文件太大,快接近7万
行代码,VC开它整个机器都慢下来了。如果不需要改它代码,也就不需要打开
sqlite3.c 文件,机器不会慢。但是,下面我要写通过修改 sqlite 代码完成加密
功能,那时候就比较痛苦了。如果个人水平较高,建议用些简单的编辑器来编辑,
例如 UltraEdit 或 Notepad 。速度会快很多。
二、基本编译
这个不想多说了,在 VC 里新建 dos 控制台空白工程,把 sqlite3.c 和
sqlite3.h 添加到工程,再新建一个 main.cpp 文件。在里面写:
extern "C"
{
#include"./sqlite3.h"
};
int main( int,char** )
{
return 0;
}
为什么要 extern “C”?如果问这个问题,我不想说太多,这是C++的基础。要在
C++ 里使用一段 C 的代码,必须要用extern “C” 括起来。C++跟 C虽然语法上有
重叠,但是它们是两个不同的东西,内存里的布局是完全不同的,在C++编译器里
不用extern “C”括起C代码,会导致编译器不知道该如何为 C 代码描述内存布局。
可能在 sqlite3.c 里人家已经把整段代码都 extern “C”括起来了,但是你遇到
一个 .c 文件就自觉的再括一次,也没什么不好。
基本工程就这样建立起来了。编译,可以通过。但是有一堆的 warning。可以不管它。
三、sqlITE操作入门
sqlite提供的是一些C函数接口,你可以用这些函数操作数据库。通过使用这些接
口,传递一些标准 sql 语句(以 char * 类型)给 sqlite 函数,sqlite 就会为
你操作数据库。
sqlite 跟MS的access一样是文件型数据库,就是说,一个数据库就是一个文件,
此数据库里可以建立很多的表,可以建立索引、触发器等等,但是,它实际上得到
sqlite 不需要任何数据库引擎,这意味着如果你需要 sqlite 来保存一些用户数
据,甚至都不需要安装数据库
(如果你做个小软件还要求人家必须装了sqlserver才能运行,那也太黑心了)。
下面开始介绍数据库基本操作。
1、基本流程
(1) 关键数据结构
sqlite 里最常用到的是 sqlite3 * 类型。从数据库打开开始,sqlite就要为这个
类型准备好内存,直到数据库关闭,整个过程都需要用到这个类型。当数据库打开
时开始,这个类型的变量就代表了你要操作的数据库。下面再详细介绍。
(2) 打开数据库
intsqlite3_open( 文件名,sqlite3** );用这个函数开始数据库操作。
需要传入两个参数,一是数据库文件名,比如:c:\\DongChunGuang_Database.db。文件名不需要一定存在,如果此文件不存在,sqlite 会自动建立它。如果它存在,就尝试把它当数据库文件来打开。
sqlite3 ** 参数即前面提到的关键数据结构。这个结构底层细节如何,你不要关它。
函数返回值表示操作是否正确,如果是 sqlITE_OK 则表示操作正常。相关的返回
值sqlite定义了一些宏。具体这些宏的含义可以参考 sqlite3.h 文件。里面有详
细定义(顺便说一下,sqlite3的代码注释率自称是非常高的,实际上也的确很
高。只要你会看英文,sqlite可以让你学到不少东西)。
(3) 关闭数据库
前面如果用 sqlite3_open 开启了一个数据库,结尾时不要忘了用这个函
下面给段简单的代码:
extern "C"
{
#include"./sqlite3.h"
};
int main( int,char** )
{
sqlite3 * db = NULL; //声明sqlite关键结构指针
int result
//打开数据库
//需要传入 db 这个指针的指针,因为 sqlite3_open 函数要为这个指针分配内存,还要让db指针指向这个内存区
result = sqlite3_open( “c:\\Dcg_database.db”,&db );
if( result != sqlITE_OK )
{
//数据库打开失败
return -1;
}
//…
//数据库打开成功
sqlite3_close( db );
return 0;
}
这就是一次数据库操作过程。
2、 sql语句操作
(1) 执行sql语句
int sqlite3_exec(sqlite3*,const char *sql,sqlite3_callback,void *,char **errmsg);
第1个参数不再说了,是前面open函数得到的指针。说了是关键数据结构。
第2个参数const char *sql 是一条 sql 语句,以\0结尾。
第3个参数sqlite3_callback是回调,当这条语句执行之后,sqlite3会去调用你提供的这个函数。(什么是回调函数,自己找别的资料学习)
第4个参数void * 是你所提供的指针,你可以传递任何一个指针参数到这里,这个参数最终会传到回调函数里面,如果不需要传递指针给回调函数,可以填NULL。等下我们再看回调函数的写法,以及这个参数的使用。
第5个参数char ** errmsg 是错误信息。注意是指针的指针。sqlite3里面有很多固定的错误信息。执行 sqlite3_exec 之后,执行失败时可以查阅这个指针(直接 printf(“%s\n”,errmsg))得到一串字符串信息,这串信息告诉你错在什么地方。sqlite3_exec函数通过修改你传入的指针的指针,把你提供的指针指向错误提示信息,这样sqlite3_exec函数外面就可以通过这个 char*得到具体错误提示。
说明:通常,sqlite3_callback和它后面的 void * 这两个位置都可以填 NULL。填NULL表示你不需要回调。比如你做insert 操作,做 delete 操作,就没有必要使用回调。而当你做select 时,就要使用回调,因为 sqlite3 把数据查出来,得通过回调告诉你查出了什么数据。
(2) exec 的回调
typedef int(*sqlite3_callback)(void*,int,char**,char**);
你的回调函数必须定义成上面这个函数的类型。下面给个简单的例子:
int LoadMyInfo( void * para,int n_column,char ** column_value,char ** column_name )
{
//para是你在sqlite3_exec 里传入的 void * 参数
//通过para参数,你可以传入一些特殊的指针(比如类指针、结构指针),然后在这里面强制转换成对应的类型(这里面是void*类型,必须强制转换成你的类型才可用)。然后操作这些数据
//n_column是这一条记录有多少个字段 (即这条记录有多少列)
// char **column_value 是个关键值,查出来的数据都保存在这里,它实际上是个1维数组(不要以为是2维数组),每一个元素都是一个 char * 值,是一个字段内容(用字符串来表示,以\0结尾)
//char ** column_name跟 column_value是对应的,表示这个字段的字段名称
//这里,我不使用 para 参数。忽略它的存在.
int i;
printf( “记录包含 %d 个字段\n”,n_column );
for( i = 0 ; i< n_column; i ++ )
{
printf( “字段名:%s ?> 字段值:%s\n”,column_name[i],column_value[i] );
}
printf( “------------------\n“ );
return 0;
}
int main( int,char ** )
{
sqlite3 * db;
int result;
char * errmsg = NULL;
result = sqlite3_open( “c:\\Dcg_database.db”,&db );
if( result != sqlITE_OK )
{
//数据库打开失败
return -1;
}
//创建一个测试表,表名叫 MyTable_1,有2个字段: ID 和 name。其中ID是一个自动增加的类型,以后insert时可以不去指定这个字段,它会自己从0开始增加
result = sqlite3_exec( db,“create tableMyTable_1( ID integer primary key autoincrement,name nvarchar(32) )”,NULL,errmsg );
if(result != sqlITE_OK )
{
printf( “创建表失败,错误码:%d,错误原因:%s\n”,result,errmsg );
}
//插入一些记录
result = sqlite3_exec( db,“insert into MyTable_1( name )values ( ‘走路’ )”,errmsg );
if(result != sqlITE_OK )
{
printf( “插入记录失败,错误码:%d,错误原因:%s\n”,errmsg );
}
result = sqlite3_exec( db,“insert into MyTable_1( name )values ( ‘骑单车’ )”,errmsg );
if(result != sqlITE_OK )
{
printf( “插入记录失败,错误码:%d,错误原因:%s\n”,errmsg );
}
result = sqlite3_exec( db,“insert into MyTable_1( name )values ( ‘坐汽车’ )”,errmsg );
}
result = sqlite3_exec( db,“select * fromMyTable_1”,LoadMyInfo,errmsg );
sqlite3_close( db );
return 0;
}
通过上面的例子,应该可以知道如何打开一个数据库,如何做数据库基本操作。
有这些知识,基本上可以应付很多数据库操作了。
(3) 不使用回调查询数据库
上面介绍的sqlite3_exec 是使用回调来执行select 操作。还有一个方法可以直接查询而不需要回调。但是,我个人感觉还是回调好,因为代码可以更加整齐,只不过用回调很麻烦,你得声明一个函数,如果这个函数是类成员函数,你还不得不把它声明成 static 的(要问为什么?这又是C++基础了。C++成员函数实际上隐藏了一个参数:this,C++调用类的成员函数的时候,隐含把类指针当成函数的第一个参数传递进去。结果,这造成跟前面说的 sqlite 回调函数的参数不相符。只有当把成员函数声明成 static 时,它才没有多余的隐含的this参数)。
虽然回调显得代码整齐,但有时候你还是想要非回调的 select 查询。这可以通过 sqlite3_get_table 函数做到。
int sqlite3_get_table(sqlite3*,const char*sql,char ***resultp,int *nrow,int *ncolumn,char **errmsg );
第1个参数不再多说,看前面的例子。
第2个参数是 sql 语句,跟 sqlite3_exec 里的 sql 是一样的。是一个很普通的以\0结尾的char *字符串。
第3个参数是查询结果,它依然一维数组(不要以为是二维数组,更不要以为是三维数组)。它内存布局是:第一行是字段名称,后面是紧接着是每个字段的值。下面用例子来说事。
第4个参数是查询出多少条记录(即查出多少行)。
第5个参数是多少个字段(多少列)。
第6个参数是错误信息,跟前面一样,这里不多说了。
下面给个简单例子:
int main( int,char ** )
{
sqlite3 * db;
int result;
char * errmsg = NULL;
char **dbResult; //是 char ** 类型,两个*号
int nRow,nColumn;
int i,j;
int index;
result = sqlite3_open( “c:\\Dcg_database.db”,&db );
if( result != sqlITE_OK )
{
//数据库打开失败
return -1;
}
//假设前面已经创建了MyTable_1 表
//开始查询,传入的dbResult 已经是 char **,这里又加了一个 & 取地址符,传递进去的就成了 char ***
result = sqlite3_get_table( db,“select *from MyTable_1”,&dbResult,&nRow,&nColumn,&errmsg );
if( sqlITE_OK == result )
{
//查询成功
index = nColumn; //前面说过 dbResult 前面第一行数据是字段名称,从 nColumn 索引开始才是真正的数据
printf( “查到%d条记录\n”,nRow );
for( i = 0; i < nRow ; i++ )
{
printf( “第 %d 条记录\n”,i+1 );
for( j = 0 ; j < nColumn; j++ )
{
printf( “字段名:%s ?> 字段值:%s\n”,dbResult[j],dbResult [index] );
++index; // dbResult 的字段值是连续的,从第0索引到第 nColumn - 1索引都是字段名称,从第 nColumn 索引开始,后面都是字段值,它把一个二维的表(传统的行列表示法)用一个扁平的形式来表示
}
printf( “-------\n” );
}
}
//到这里,不论数据库查询是否成功,都释放 char** 查询结果,使用 sqlite 提供的功能来释放
sqlite3_free_table( dbResult );
sqlite3_close( db );
return 0;
}
用以上的方法,再配上 sql语句,完全可以应付绝大多数数据库需求。
但有一种情况,用上面方法是无法实现的:需要insert、select二进制。当需要处理二进制数据时,上面的方法就没办法做到。下面这一节说明如何插入二进制数据
3、操作二进制
sqlite 操作二进制数据需要用一个辅助的数据类型:sqlite3_stmt * 。
这个数据类型记录了一个“sql语句”。为什么我把 “sql语句” 用双引号引起来?因为你可以把 sqlite3_stmt * 所表示的内容看成是 sql语句,但是实际上它不是我们所熟知的sql语句。它是一个已经把sql语句解析了的、用sqlite自己标记记录的内部数据结构。
正因为这个结构已经被解析了,所以你可以往这个语句里插入二进制数据。当然,把二进制数据插到 sqlite3_stmt 结构里可不能直接 memcpy ,也不能像 std::string 那样用 + 号。必须用 sqlite 提供的函数来插入。
(1) 写入二进制
下面说写二进制的步骤。
要插入二进制,前提是这个表的字段的类型是 blob 类型。我假设有这么一张表:
create table Tbl_2(ID integer,file_content blob )
首先声明
sqlite3_stmt * stat;
然后,把一个 sql 语句解析到 stat 结构里去:
// sqlite3_prepare 接口把一条sql语句编译成字节码留给后面的执行函数. 使用该接口访问数据库是当前比较好的的一种方法.
sqlite3_prepare( db,“insert into Tbl_2( ID,file_content) values( 10,? )”,-1,&stat,0 );
。第一个参数跟前面一样,是个sqlite3 * 类型变量,
第二个参数是一个 sql 语句。
这个 sql 语句特别之处在于 values 里面有个? 号。在sqlite3_prepare函数里,?号表示一个未定的值,它的值等下才插入。
第三个参数我写的是-1,这个参数含义是前面 sql 语句的长度。如果小于0,sqlite会自动计算它的长度(把sql语句当成以\0结尾的字符串)。
第四个参数是sqlite3_stmt 的指针的指针。解析以后的sql语句就放在这个结构里。
第五个参数我也不知道是干什么的。为0就可以了。
如果这个函数执行成功(返回值是 sqlITE_OK 且 stat 不为NULL ),那么下面就可以开始插入二进制数据。
sqlite3_bind_blob(stat,1,pdata,(int)(length_of_data_in_bytes),NULL ); // pdata为数据缓冲区,length_of_data_in_bytes为数据大小,以字节为单位
这个函数一共有5个参数。
第1个参数:是前面prepare得到的 sqlite3_stmt * 类型变量。
第2个参数:?号的索引。前面prepare的sql语句里有一个?号,假如有多个?号怎么插入?方法就是改变 bind_blob 函数第2个参数。这个参数我写1,表示这里插入的值要替换stat 的第一个?号(这里的索引从1开始计数,而非从0开始)。如果你有多个?号,就写多个 bind_blob 语句,并改变它们的第2个参数就替换到不同的?号。如果有?号没有替换,sqlite为它取值null。
第3个参数:二进制数据起始指针。
第4个参数:二进制数据的长度,以字节为单位。
第5个参数:是个析够回调函数,告诉sqlite当把数据处理完后调用此函数来析够你的数据。这个参数我还没有使用过,因此理解也不深刻。但是一般都填NULL,需要释放的内存自己用代码来释放。
bind完了之后,二进制数据就进入了你的“sql语句”里了。你现在可以把它保存到数据库里:
虚拟机执行字节码,执行过程是一个步进(stepwise)的过程,每一步(step)由sqlite3_step()启动,并由VDBE(sqlite虚拟机)执行一段字节 码。由sqlite3_prepare编译字节代码,并由sqlite3_step()启动虚拟机执行。在遍历结果集的过程中,它返回sqlITE_ROW,当到达结果末尾时,返回sqlITE_DONE
int result =sqlite3_step( stat );
通过这个语句,stat 表示的sql语句就被写到了数据库里。
最后,要把 sqlite3_stmt 结构给释放:sqlite3_finalize(stat ); //把刚才分配的内容析构掉
(2) 读出二进制
下面说读二进制的步骤。
跟前面一样,
先声明 sqlite3_stmt * 类型变量:
sqlite3_stmt * stat;
然后,把一个 sql 语句解析到 stat 结构里去:
sqlite3_prepare( db,“select * from Tbl_2”,0 );
当 prepare 成功之后(返回值是 sqlITE_OK ),开始查询数据。
int result =sqlite3_step( stat );
这一句的返回值是 sqlITE_ROW 时表示成功(不是 sqlITE_OK )。
你可以循环执行sqlite3_step 函数,一次 step 查询出一条记录。直到返回值不为 sqlITE_ROW 时表示查询结束。
然后开始获取第一个字段:ID 的值。ID是个整数,用下面这个语句获取它的值:
int id =sqlite3_column_int( stat,0 ); //第2个参数表示获取第几个字段内容,从0开始计算,因为我的表的ID字段是第一个字段,因此这里我填0
下面开始获取file_content 的值,因为file_content 是二进制,因此我需要得到它的指针,还有它的长度:
const void * pFileContent =sqlite3_column_blob( stat,1 );
int len = sqlite3_column_bytes( stat,1 );
这样就得到了二进制的值。
把 pFileContent的内容保存出来之后,
不要忘了释放 sqlite3_stmt 结构:
sqlite3_finalize( stat ); //把刚才分配的内容析构掉
(3) 重复使用 sqlite3_stmt 结构
如果你需要重复使用 sqlite3_prepare 解析好的sqlite3_stmt 结构,需要用函数: sqlite3_reset。
result = sqlite3_reset(stat);
这样, stat 结构又成为 sqlite3_prepare 完成时的状态,你可以重新为它 bind 内容。
(4) 事务处理
sqlite 是支持事务处理的。如果你知道你要同步删除很多数据,不仿把它们做成一个统一的事务。通常一次 sqlite3_exec 就是一次事务,如果你要删除1万条数据,sqlite就做了1万次:开始新事务->删除一条数据->提交事务->开始新事务->… 的过程。这个操作是很慢的。因为时间都花在了开始事务、提交事务上。你可以把这些同类操作做成一个事务,这样如果操作错误,还能够回滚事务。
事务的操作没有特别的接口函数,它就是一个普通的 sql 语句而已:
分别如下:
int result;
result =sqlite3_exec( db,"begin transaction",&zErrorMsg ); //开始一个事务
result =sqlite3_exec( db,"commit transaction",&zErrorMsg ); //提交事务
result =sqlite3_exec( db,"rollback transaction",&zErrorMsg ); //回滚事务
(3) 补充
基本上,使用sqlite3_open,sqlite3_close,sqlite3_exec这三个函数,可以完成大大部分的工作。但还不完善。上面的例子中,都是直接以sql语句的形式来操作数据库,这样很容易被注入。所以有必要使用sql参数。
sqlite3_prepare
sqlite3_bind_*
sqlite3_step
sqlite3_column_*
struct sqlite3_stmt
sqlite3_finalize
sqlite3_prepare用来编译sql语句。sql语句被执行之前,必须先编译成字节码。S
qlite3_stmt是一个结构体,表示sql语句编译后的字节码。
sqlite3_bind_*用于将sql参数绑定到sql语句。
sqlite3_column_*用于从查询的结果中获取数据。
sqlite3_finalize用来释放sqlite3_stmt对象。
下面就用一个例子来演示吧~~
//----------------------------------------------
//sqlite3_prepare,sqlite3_bind_*,
//sqlite3_step,sqlite3_column_*,
//sqlite3_column_type
//sqlite3_stmt,sqlite3_finalize,sqlite3_reset
//查询
// ----------------------------------------------
sqlite3 *conn = NULL;
sqlite3_stmt *stmt = NULL;
const char *err_msg = NULL;
// 列数据类型
char col_types[][10] = { "","Integer","Float","Text","Blob","NULL"};
sqlite3_open("test.db",&conn);
sqlite3_prepare(conn,"SELECT * FROM[test_for_cpp] WHERE [id]>?",&stmt,&err_msg);
sqlite3_bind_int(stmt,5);
while (sqlITE_ROW == sqlite3_step(stmt))
{
int col_count = sqlite3_column_count(stmt); // 结果集中列的数量
const char *col_0_name = sqlite3_column_name(stmt,0); // 获取列名
int id = sqlite3_column_int(stmt,0);
int id_type = sqlite3_column_type(stmt,0); // 获取列数据类型
const char *col_2_name = sqlite3_column_name(stmt,2);
int age = sqlite3_column_int(stmt,2);
int age_type = sqlite3_column_type(stmt,2);
const char *col_1_name = sqlite3_column_name(stmt,1);
char name[80];
strncpy(name,(const char *)sqlite3_column_text(stmt,1),80);
int name_type = sqlite3_column_type(stmt,1);
// 打印结果
printf("col_count: %d,%s = %d(%s),%s = %s(%s),%s = %d(%s)\n",
col_count,col_0_name,id,col_types[id_type],col_2_name,name,
col_types[name_type],col_1_name,age,col_types[age_type]);
}
sqlite3_finalize(stmt); // 释放sqlite3_stmt
sqlite3_close(conn);
这段代码查询id号大于5的所有记录,并显示到控制台,最后效果为
sqlite c/c++ api 学习 - stanfordxu - stanfordxu的博客其他函数
在上面的例子中,还使用了其他的一些函数,如:
sqlite3_column_count用于获取结果集中列的数量;
sqlite3_column_type用于获取列的数据类型;
sqlite3_errcode用于获取最近一次操作出错的错误代码;
sqlite3_errmsg用
于获取最近一次操作出错的错误说明。 sqlite的api中还有很多的函数,有了上面的基础,相信你通过查询官方的文档,能迅速掌握本文未介绍的api。
字符串编码
在官网上查看sqlite的api的时候,发现有很同函数的名称都非常相似,只是最后添加了”_16”,如:sqlite3_open和 sqlite3_open16,sqlite3_errmsg和sqlite3_errmsg16,等等。其实添加了”16”后缀的函数,主要用于支持utf-16编码的字符串。如 sqlite3_open16可以接收utf-16编码的数据库路径。
在sourceforge上,有一个开源的项目sqlitex,它封装了这些api,使对sqlite数据库的操作更加方便。sqlitex的源代码非常的简单,感兴趣的同学可以下载下来自己研究。
/////////////////////////////////////////////////// 另外一个代码///////////////////////////////////////////////
#include <stdio.h>
#include <stdlib.h>
#include "sqlite3.h"
#include <string.h>
int main(int argc,char **argv)
{
int rc,i,ncols;
sqlite3 *db;
sqlite3_stmt *stmt;
char *sql;
const char *tail;
//打开数据
rc = sqlite3_open("foods.db",&db);
if(rc) {
fprintf(stderr,"Can't open database: %s\n",
sqlite3_errmsg(db));
sqlite3_close(db);
exit(1);
}
sql = "select * from episodes";
//预处理
rc = sqlite3_prepare(db,sql,(int)strlen(sql),&tail);
if(rc != sqlITE_OK) {
fprintf(stderr,"sql error: %s\n",sqlite3_errmsg(db));
}
rc = sqlite3_step(stmt);
ncols = sqlite3_column_count(stmt);
while(rc == sqlITE_ROW) {
for(i=0; i < ncols; i++) {
fprintf(stderr,"'%s' ",sqlite3_column_text(stmt,i));
}
fprintf(stderr,"\n");
rc = sqlite3_step(stmt);
}
//释放statement
sqlite3_finalize(stmt);
sqlite3_close(db);
return 0;
//=====================================================================
一、、 给数据库加密
前面所说的内容网上已经有很多资料,虽然比较零散,但是花点时间也还是可以找到的。现在要说的这个——数据库加密,资料就很难找。也可能是我操作水平不够,找不到对应资料。但不管这样,我还是通过网上能找到的很有限的资料,探索出了给sqlite数据库加密的完整步骤。
这里要提一下,虽然sqlite 很好用,速度快、体积小巧。但是它保存的文件却是明文的。若不信可以用 NotePad 打开数据库文件瞧瞧,里面 insert 的内容几乎一览无余。这样赤裸裸的展现自己,可不是我们的初衷。当然,如果你在嵌入式系统、智能手机上使用 sqlite,最好是不加密,因为这些系统运算能力有限,你做为一个新功能提供者,不能把用户有限的运算能力全部花掉。
sqlite为了速度而诞生。因此sqlite本身不对数据库加密,要知道,如果你选择标准AES算法加密,那么一定有接近50%的时间消耗在加解密算法上,甚至更多(性能主要取决于你算法编写水平以及你是否能使用cpu提供的底层运算能力,比如MMX或sse系列指令可以大幅度提升运算速度)。
sqlite免费版本是不提供加密功能的,当然你也可以选择他们的收费版本,那你得支付2000块钱,而且是USD。我这里也不是说支付钱不好,如果只为了数据库加密就去支付2000块,我觉得划不来。因为下面我将要告诉你如何为免费的sqlite扩展出加密模块——自己动手扩展,这是sqlite允许,也是它提倡的。
那么,就让我们一起开始为sqlite3.c 文件扩展出加密模块。
i.1必要的宏
通过阅读 sqlite 代码(当然没有全部阅读完,6万多行代码,没有一行是我习惯的风格,我可没那么多眼神去看),我搞清楚了两件事:
需要 #define 一个宏才能使用加密扩展。
这个宏就是 sqlITE_HAS_CODEC。
你在代码最前面(也可以在sqlite3.h 文件第一行)定义:
#ifndef sqlITE_HAS_CODEC
#define sqlITE_HAS_CODEC
#endif
如果你在代码里定义了此宏,但是还能够正常编译,那么应该是操作没有成功。因为你应该会被编译器提示有一些函数无法链接才对。如果你用的是 VC 2003,你可以在“解决方案”里右键点击你的工程,然后选“属性”,找到“C/C++”,再找到“命令行”,在里面手工添加“/D "sqlITE_HAS_CODEC"”。
定义了这个宏,一些被sqlite 故意屏蔽掉的代码就被使用了。这些代码就是加解密的接口。
尝试编译,vc会提示你有一些函数无法链接,因为找不到他们的实现。
如果你也用的是VC2003,那么会得到下面的提示:
error LNK2019: 无法解析的外部符号 _sqlite3CodecGetKey ,该符号在函数 _attachFunc 中被引用
error LNK2019: 无法解析的外部符号 _sqlite3CodecAttach ,该符号在函数 _attachFunc 中被引用
error LNK2019: 无法解析的外部符号 _sqlite3_activate_see ,该符号在函数 _sqlite3Pragma 中被引用
error LNK2019: 无法解析的外部符号 _sqlite3_key ,该符号在函数 _sqlite3Pragma 中被引用
fatal error LNK1120: 4 个无法解析的外部命令
这是正常的,因为sqlite只留了接口而已,并没有给出实现。
下面就让我来实现这些接口。
i.2自己实现加解密接口函数
如果真要我从一份www.sqlite.org 网上down下来的 sqlite3.c 文件,直接摸索出这些接口的实现,我认为我还没有这个能力。
好在网上还有一些代码已经实现了这个功能。通过参照他们的代码以及不断编译中vc给出的错误提示,最终我把整个接口整理出来。
实现这些预留接口不是那么容易,要重头说一次怎么回事很困难。我把代码都写好了,直接把他们按我下面的说明拷贝到 sqlite3.c 文件对应地方即可。我在下面也提供了sqlite3.c 文件,可以直接参考或取下来使用。
这里要说一点的是,我另外新建了两个文件:crypt.c和crypt.h。
其中crypt.h如此定义:
#ifndefDCG_sqlITE_CRYPT_FUNC_
#defineDCG_sqlITE_CRYPT_FUNC_
/***********
***********/
/***********
关键加密函数
***********/
int My_Encrypt_Func( unsigned char * pData,unsigned int data_len,const char * key,unsigned int len_of_key );
/***********
关键解密函数
***********/
int My_DeEncrypt_Func( unsigned char *pData,unsigned int len_of_key );
#endif
其中的 crypt.c 如此定义:
#include "./crypt.h"
#include "memory.h"
/***********
关键加密函数
***********/
int My_Encrypt_Func( unsigned char * pData,unsigned int len_of_key )
{
return 0;
}
/***********
关键解密函数
***********/
int My_DeEncrypt_Func( unsigned char *pData,unsigned int len_of_key )
{
return 0;
}
这个文件很容易看,就两函数,一个加密一个解密。传进来的参数分别是待处理的数据、数据长度、密钥、密钥长度。
处理时直接把结果作用于pData 指针指向的内容。
你需要定义自己的加解密过程,就改动这两个函数,其它部分不用动。扩展起来很简单。
这里有个特点,data_len一般总是 1024 字节。正因为如此,你可以在你的算法里使用一些特定长度的加密算法,比如AES要求被加密数据一定是128位(16字节)长。这个1024不是碰巧,而是 sqlite的页定义是1024字节,在sqlite3.c文件里有定义:
# define sqlITE_DEFAULT_PAGE_SIZE 1024
你可以改动这个值,不过还是建议没有必要不要去改它。
上面写了两个扩展函数,如何把扩展函数跟 sqlite 挂接起来,这个过程说起来比较麻烦。我直接贴代码。
分3个步骤。
#ifdef sqlITE_HAS_CODEC
#include "./crypt.h"
/***********
***********/
void sqlite3pager_free_codecarg(void*pArg);
#endif
这个函数之所以要在sqlite3.c 开头声明,是因为下面在sqlite3.c 里面某些函数里要插入这个函数调用。所以要提前声明。
其次,在sqlite3.c文件里搜索“sqlite3PagerClose”函数,要找到它的实现代码(而不是声明代码)。
实现代码里一开始是:
#ifdef sqlITE_ENABLE_MEMORY_MANAGEMENT
/*A malloc() cannot fail in sqlite3ThreadData() as one or more calls to
**malloc() must have already been made by this thread before it gets
**to this point. This means the ThreadData must have been allocated already
**so that ThreadData.nAlloc can be set.
*/
ThreadData *pTsd = sqlite3ThreadData();
assert( pPager );
assert( pTsd && pTsd->nAlloc );
#endif
需要在这部分后面紧接着插入:
#ifdef sqlITE_HAS_CODEC
sqlite3pager_free_codecarg(pPager->pCodecArg);
#endif
这里要注意,sqlite3PagerClose函数大概也是 3.3.17版本左右才改名的,以前版本里是叫 “sqlite3pager_close”。因此你在老版本sqlite代码里搜索“sqlite3PagerClose”是搜不到的。
类似的还有“sqlite3pager_get”、“sqlite3pager_unref”、“sqlite3pager_write”、“sqlite3pager_pagecount”等都是老版本函数,它们在 pager.h 文件里定义。新版本对应函数是在 sqlite3.h 里定义(因为都合并到 sqlite3.c和sqlite3.h两文件了)。所以,如果你在使用老版本的sqlite,先看看 pager.h 文件,这些函数不是消失了,也不是新蹦出来的,而是老版本函数改名得到的。
/************** End of main.c************************************************/
在这一行后面,接上本文最下面的代码段。
这些代码很长,我不再解释,直接接上去就得了。
唯一要提的是DeriveKey 函数。这个函数是对密钥的扩展。比如,你要求密钥是128位,即是16字节,但是如果用户只输入 1个字节呢?2个字节呢?或输入50个字节呢?你得对密钥进行扩展,使之符合16字节的要求。
DeriveKey 函数就是做这个扩展的。有人把接收到的密钥求md5,这也是一个办法,因为md5运算结果固定16字节,不论你有多少字符,最后就是16字节。这是md5算法的特点。但是我不想用md5,因为还得为它添加包含一些 md5 的.c或.cpp文件。我不想这么做。我自己写了一个算法来扩展密钥,很简单的算法。当然,你也可以使用你的扩展方法,也而可以使用 md5 算法。只要修改DeriveKey 函数就可以了。
在 DeriveKey 函数里,只管申请空间构造所需要的密钥,不需要释放,因为在另一个函数里有释放过程,而那个函数会在数据库关闭时被调用。参考我的 DeriveKey 函数来申请内存。
这里我给出我已经修改好的sqlite3.c 和 sqlite3.h 文件。
如果太懒,就直接使用这两个文件,编译肯定能通过,运行也正常。当然,你必须按我前面提的,新建 crypt.h 和 crypt.c 文件,而且函数要按我前面定义的要求来做。
i.3加密使用方法:
你要把加密功能给用上,除了改sqlite3.c 文件、给你工程添加sqlITE_HAS_CODEC 宏,还得修改你的数据库调用函数。
前面提到过,要开始一个数据库操作,必须先 sqlite3_open 。
加解密过程就在sqlite3_open 后面操作。
假设你已经sqlite3_open 成功了,紧接着写下面的代码:
int i;
//添加、使用密码
i = sqlite3_key( db,"dcg",3 );
//修改密码
i = sqlite3_rekey( db,0 );
第1个参数是 sqlite3 * 类型变量,代表着用 sqlite3_open 打开的数据库(或新建数据库)。
第2个参数是密钥。
第3个参数是密钥长度。
用sqlite3_rekey 来修改密码。参数含义同sqlite3_key。
实际上,你可以在sqlite3_open函数之后,到 sqlite3_close 函数之前任意位置调用 sqlite3_key 来设置密码。
但是如果你没有设置密码,而数据库之前是有密码的,那么你做任何操作都会得到一个返回值:sqlITE_NOTADB,并且得到错误提示:“file is encrypted or is not a database”。
只有当你用 sqlite3_key设置了正确的密码,数据库才会正常工作。
如果你要修改密码,前提是你必须先 sqlite3_open 打开数据库成功,然后 sqlite3_key 设置密钥成功,之后才能用 sqlite3_rekey 来修改密码。
如果数据库有密码,但你没有用sqlite3_key 设置密码,那么当你尝试用sqlite3_rekey 来修改密码时会得到sqlITE_NOTADB 返回值。
如果你需要清空密码,可以使用:
//修改密码
i = sqlite3_rekey( db,0 );
来完成密码清空功能。
/***
董淳光定义的加密函数
***/
#ifdef sqlITE_HAS_CODEC
/***
加密结构
***/
#define CRYPT_OFFSET 8
typedef struct _CryptBlock
{
BYTE*ReadKey; // 读数据库和写入事务的密钥
BYTE*WriteKey; // 写入数据库的密钥
intPageSize; // 页的大小
BYTE*Data;
} CryptBlock,*LPCryptBlock;
#ifndefDB_KEY_LENGTH_BYTE /*密钥长度*/
#defineDB_KEY_LENGTH_BYTE 16 /*密钥长度*/
#endif
#ifndefDB_KEY_PADDING /*密钥位数不足时补充的字符*/
#defineDB_KEY_PADDING 0x33 /*密钥位数不足时补充的字符*/
#endif
/** 这个函数不需要做任何处理,获取密钥的部分在下面 DeriveKey 函数里实现 **/
void sqlite3CodecGetKey(sqlite3* db,intnDB,void** Key,int* nKey)
{
return ;
}
/*被sqlite 和 sqlite3_key_interop 调用,附加密钥到数据库.*/
int sqlite3CodecAttach(sqlite3 *db,intnDb,const void *pKey,int nKeyLen);
/**
这个函数好像是 sqlite3.3.17前不久才加的,以前版本的sqlite里没有看到这个函数
这个函数我还没有搞清楚是做什么的,它里面什么都不做直接返回,对加解密没有影响
**/
void sqlite3_activate_see(const char* right)
{
return;
}
int sqlite3_key(sqlite3 *db,const void*pKey,int nKey);
int sqlite3_rekey(sqlite3 *db,int nKey);
/***
***/
// 从用户提供的缓冲区中得到一个加密密钥
// 用户提供的密钥可能位数上满足不了要求,使用这个函数来完成密钥扩展
static unsigned char * DeriveKey(const void*pKey,int nKeyLen);
//创建或更新一个页的加密算法索引.此函数会申请缓冲区.
static LPCryptBlockCreateCryptBlock(unsigned char* hKey,Pager *pager,LPCryptBlock pExisting);
void * sqlite3Codec(void *pArg,unsignedchar *data,Pgno nPageNum,int nMode);
//设置密码函数
int __stdcall sqlite3_key_interop(sqlite3*db,int nKeySize);
int __stdcall sqlite3_rekey_interop(sqlite3*db,int nKeySize);
//销毁一个加密块及相关的缓冲区,密钥.
static void DestroyCryptBlock(LPCryptBlockpBlock);
static void *sqlite3pager_get_codecarg(Pager *pPager);
void sqlite3pager_set_codec(Pager*pPager,void *(*xCodec)(void*,void*,Pgno,int),void *pCodecArg );
//加密/解密函数,int nMode)
{
LPCryptBlock pBlock = (LPCryptBlock)pArg;
unsigned int dwPageSize = 0;
if (!pBlock) return data;
// 确保pager的页长度和加密块的页长度相等.如果改变,就需要调整.
if (nMode != 2)
{
PgHdr *pageHeader;
pageHeader = DATA_TO_PGHDR(data);
if (pageHeader->pPager->pageSize != pBlock->PageSize)
{
CreateCryptBlock(0,pageHeader->pPager,pBlock);
}
}
switch(nMode)
{
case 0: // Undo a "case 7"journal file encryption
case 2: //重载一个页
case 3: //载入一个页
if (!pBlock->ReadKey) break;
dwPageSize = pBlock->PageSize;
My_DeEncrypt_Func(data,dwPageSize,pBlock->ReadKey,DB_KEY_LENGTH_BYTE ); /*调用我的解密函数*/
break;
if (!pBlock->WriteKey) break;
memcpy(pBlock->Data+ CRYPT_OFFSET,data,pBlock->PageSize);
data = pBlock->Data + CRYPT_OFFSET;
dwPageSize = pBlock->PageSize;
My_Encrypt_Func(data,pBlock->WriteKey,DB_KEY_LENGTH_BYTE ); /*调用我的加密函数*/
break;
case 7: //加密事务文件的页
/*在正常环境下,读密钥和写密钥相同. 当数据库是被重新加密的,读密钥和写密钥未必相同.
回滚事务必要用数据库文件的原始密钥写入.因此,当一次回滚被写入,总是用数据库的读密钥,
这是为了保证与读取原始数据的密钥相同.
*/
if (!pBlock->ReadKey) break;
memcpy(pBlock->Data + CRYPT_OFFSET,pBlock->PageSize);
data = pBlock->Data + CRYPT_OFFSET;
dwPageSize = pBlock->PageSize;
My_Encrypt_Func( data,DB_KEY_LENGTH_BYTE ); /*调用我的加密函数*/
break;
}
return data;
}
//销毁一个加密块及相关的缓冲区,密钥.
static void DestroyCryptBlock(LPCryptBlockpBlock)
{
//销毁读密钥.
if (pBlock->ReadKey){
sqliteFree(pBlock->ReadKey);
}
//如果写密钥存在并且不等于读密钥,也销毁.
if (pBlock->WriteKey &&pBlock->WriteKey != pBlock->ReadKey){
sqliteFree(pBlock->WriteKey);
}
if(pBlock->Data){
sqliteFree(pBlock->Data);
}
//释放加密块.
sqliteFree(pBlock);
}
static void *sqlite3pager_get_codecarg(Pager *pPager)
{
return (pPager->xCodec) ?pPager->pCodecArg: NULL;
}
// 从用户提供的缓冲区中得到一个加密密钥
static unsigned char * DeriveKey(const void*pKey,int nKeyLen)
{
unsigned char * hKey = NULL;
int j;
if( pKey == NULL || nKeyLen == 0 )
{
return NULL;
}
hKey = sqliteMalloc( DB_KEY_LENGTH_BYTE + 1);
if( hKey == NULL )
{
return NULL;
}
hKey[ DB_KEY_LENGTH_BYTE ] = 0;
if( nKeyLen < DB_KEY_LENGTH_BYTE )
{
memcpy( hKey,pKey,nKeyLen ); //先拷贝得到密钥前面的部分
j = DB_KEY_LENGTH_BYTE - nKeyLen;
//补充密钥后面的部分
memset( hKey + nKeyLen,DB_KEY_PADDING,j );
}
else
{ //密钥位数已经足够,直接把密钥取过来
memcpy(hKey,DB_KEY_LENGTH_BYTE );
}
return hKey;
}
//创建或更新一个页的加密算法索引.此函数会申请缓冲区.
static LPCryptBlockCreateCryptBlock(unsigned char* hKey,LPCryptBlock pExisting)
{
LPCryptBlock pBlock;
if (!pExisting) //创建新加密块
{
pBlock = sqliteMalloc(sizeof(CryptBlock));
memset(pBlock,sizeof(CryptBlock));
pBlock->ReadKey = hKey;
pBlock->WriteKey = hKey;
pBlock->PageSize = pager->pageSize;
pBlock->Data = (unsigned char*)sqliteMalloc(pBlock->PageSize +CRYPT_OFFSET);
}
else //更新存在的加密块
{
pBlock = pExisting;
if ( pBlock->PageSize != pager->pageSize &&!pBlock->Data){
sqliteFree(pBlock->Data);
pBlock->PageSize = pager->pageSize;
pBlock->Data = (unsigned char*)sqliteMalloc(pBlock->PageSize +CRYPT_OFFSET);
}
}
memset(pBlock->Data,pBlock->PageSize + CRYPT_OFFSET);
return pBlock;
}
/*
** Set the codec for this pager
*/
void sqlite3pager_set_codec(
Pager *pPager,
void*(*xCodec)(void*,
void *pCodecArg
)
{
pPager->xCodec = xCodec;
pPager->pCodecArg = pCodecArg;
}
int sqlite3_key(sqlite3 *db,int nKey)
{
return sqlite3_key_interop(db,nKey);
}
int sqlite3_rekey(sqlite3 *db,int nKey)
{
return sqlite3_rekey_interop(db,nKey);
}
/*被sqlite 和 sqlite3_key_interop 调用,int nKeyLen)
{
int rc = sqlITE_ERROR;
unsigned char* hKey = 0;
//如果没有指定密匙,可能标识用了主数据库的加密或没加密.
if (!pKey || !nKeyLen)
{
if (!nDb)
{
return sqlITE_OK; //主数据库,没有指定密钥所以没有加密.
}
{
LPCryptBlock pBlock =(LPCryptBlock)sqlite3pager_get_codecarg(sqlite3BtreePager(db->aDb[0].pBt));
if (!pBlock) return sqlITE_OK; //主数据库没有加密
if (!pBlock->ReadKey) return sqlITE_OK; //没有加密
memcpy(pBlock->ReadKey,&hKey,16);
}
}
else //用户提供了密码,从中创建密钥.
{
hKey = DeriveKey(pKey,nKeyLen);
}
//创建一个新的加密块,并将解码器指向新的附加数据库.
if (hKey)
{
LPCryptBlock pBlock = CreateCryptBlock(hKey,sqlite3BtreePager(db->aDb[nDb].pBt),NULL);
sqlite3pager_set_codec(sqlite3BtreePager(db->aDb[nDb].pBt),sqlite3Codec,pBlock);
rc = sqlITE_OK;
}
return rc;
}
// Changes the encryption key for anexisting database.
int __stdcall sqlite3_rekey_interop(sqlite3*db,int nKeySize)
{
Btree *pbt = db->aDb[0].pBt;
Pager *p = sqlite3BtreePager(pbt);
LPCryptBlock pBlock =(LPCryptBlock)sqlite3pager_get_codecarg(p);
unsigned char * hKey = DeriveKey(pKey,nKeySize);
int rc = sqlITE_ERROR;
if (!pBlock && !hKey) returnsqlITE_OK;
//重新加密一个数据库,改变pager的写密钥,读密钥依旧保留.
if (!pBlock) //加密一个未加密的数据库
{
pBlock = CreateCryptBlock(hKey,p,NULL);
pBlock->ReadKey = 0; // 原始数据库未加密
sqlite3pager_set_codec(sqlite3BtreePager(pbt),pBlock);
}
else // 改变已加密数据库的写密钥
{
pBlock->WriteKey = hKey;
}
// 开始一个事务
rc = sqlite3BtreeBeginTrans(pbt,1);
if (!rc)
{
// 用新密钥重写所有的页到数据库。
Pgno nPage = sqlite3PagerPagecount(p);
Pgno nSkip = PAGER_MJ_PGNO(p);
void *pPage;
Pgno n;
for(n = 1; rc == sqlITE_OK && n <= nPage; n ++)
{
if (n == nSkip) continue;
rc = sqlite3PagerGet(p,n,&pPage);
if(!rc)
{
rc = sqlite3PagerWrite(pPage);
sqlite3PagerUnref(pPage);
}
}
}
// 如果成功,提交事务。
if (!rc)
{
rc = sqlite3BtreeCommit(pbt);
}
// 如果失败,回滚。
if (rc)
{
sqlite3BtreeRollback(pbt);
}
// 如果成功,销毁先前的读密钥。并使读密钥等于当前的写密钥。
if (!rc)
{
if (pBlock->ReadKey)
{
sqliteFree(pBlock->ReadKey);
}
pBlock->ReadKey = pBlock->WriteKey;
}
else// 如果失败,销毁当前的写密钥,并恢复为当前的读密钥。
{
if (pBlock->WriteKey)
{
sqliteFree(pBlock->WriteKey);
}
pBlock->WriteKey = pBlock->ReadKey;
}
// 如果读密钥和写密钥皆为空,就不需要再对页进行编解码。
// 销毁加密块并移除页的编解码器
if (!pBlock->ReadKey &&!pBlock->WriteKey)
{
sqlite3pager_set_codec(p,NULL);
DestroyCryptBlock(pBlock);
}
return rc;
}
/***
下面是加密函数的主体
***/
int __stdcall sqlite3_key_interop(sqlite3*db,int nKeySize)
{
return sqlite3CodecAttach(db,nKeySize);
}
// 释放与一个页相关的加密块
void sqlite3pager_free_codecarg(void *pArg)
{
if (pArg)
DestroyCryptBlock((LPCryptBlock)pArg);
}
#endif //#ifdef sqlITE_HAS_CODEC
五、 后记
写此教程,可不是一个累字能解释。
但是我还是觉得欣慰的,因为我很久以前就想写 sqlite 的教程,一来自己备忘,二而已造福大众,大家不用再走弯路。
本人第一次写教程,不足的地方请大家指出。