Spark/Scala实现推荐系统中的相似度算法(欧几里得距离、皮尔逊相关系数、余弦相似度:附实现代码)

前端之家收集整理的这篇文章主要介绍了Spark/Scala实现推荐系统中的相似度算法(欧几里得距离、皮尔逊相关系数、余弦相似度:附实现代码)前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。

推荐系统中,协同过滤算法是应用较多的,具体又主要划分为基于用户和基于物品的协同过滤算法,核心点就是基于"一个人"或"一件物品",根据这个人或物品所具有的属性,比如对于人就是性别、年龄、工作、收入、喜好等,找出与这个人或物品相似的人或物,当然实际处理中参考的因子会复杂的多。

本篇文章不介绍相关数学概念,主要给出常用的相似度算法代码实现,并且同一算法有多种实现方式。

 

欧几里得距离

  1. def euclidean2(v1: Vector,v2: Vector): Double = {
  2. require(v1.size == v2.size,s"SimilarityAlgorithms:Vector dimensions do not match: Dim(v1)=${v1.size} and Dim(v2)" +
  3. s"=${v2.size}.")
  4.  
  5. val x = v1.toArray
  6. val y = v2.toArray
  7.  
  8. euclidean(x,y)
  9. }
  10.  
  11. def euclidean(x: Array[Double],y: Array[Double]): Double = {
  12. require(x.length == y.length,s"SimilarityAlgorithms:Array length do not match: Len(x)=${x.length} and Len(y)" +
  13. s"=${y.length}.")
  14.  
  15. math.sqrt(x.zip(y).map(p => p._1 - p._2).map(d => d * d).sum)
  16. }
  17. def euclidean(v1: Vector,v2: Vector): Double = {
  18. val sqdist = Vectors.sqdist(v1,v2)
  19. math.sqrt(sqdist)
  20. }

 

皮尔逊相关系数

  1. def pearsonCorrelationSimilarity(arr1: Array[Double],arr2: Array[Double]): Double = {
  2. require(arr1.length == arr2.length,s"SimilarityAlgorithms:Array length do not match: Len(x)=${arr1.length} and Len(y)" +
  3. s"=${arr2.length}.")
  4.  
  5. val sum_vec1 = arr1.sum
  6. val sum_vec2 = arr2.sum
  7.  
  8. val square_sum_vec1 = arr1.map(x => x * x).sum
  9. val square_sum_vec2 = arr2.map(x => x * x).sum
  10.  
  11. val zipVec = arr1.zip(arr2)
  12.  
  13. val product = zipVec.map(x => x._1 * x._2).sum
  14. val numerator = product - (sum_vec1 * sum_vec2 / arr1.length)
  15.  
  16. val dominator = math.pow((square_sum_vec1 - math.pow(sum_vec1,2) / arr1.length) * (square_sum_vec2 - math.pow(sum_vec2,2) / arr2.length),0.5)
  17. if (dominator == 0) Double.NaN else numerator / (dominator * 1.0)
  18. }

 

余弦相似度

  1. /** jblas实现余弦相似度 */
  2. def cosineSimilarity(v1: DoubleMatrix,v2: DoubleMatrix): Double = {
  3. require(x.length == y.length,s"SimilarityAlgorithms:Array length do not match: Len(v1)=${x.length} and Len(v2)" +
  4. s"=${y.length}.")
  5. v1.dot(v2) / (v1.norm2() * v2.norm2())
  6. }
  7. def cosineSimilarity(v1: Vector,s"SimilarityAlgorithms:Vector dimensions do not match: Dim(v1)=${v1.size} and Dim(v2)" +
  8. s"=${v2.size}.")
  9.  
  10. val x = v1.toArray
  11. val y = v2.toArray
  12.  
  13. cosineSimilarity(x,y)
  14. }
  15.  
  16. def cosineSimilarity(x: Array[Double],s"SimilarityAlgorithms:Array length do not match: Len(x)=${x.length} and Len(y)" +
  17. s"=${y.length}.")
  18.  
  19. val member = x.zip(y).map(d => d._1 * d._2).sum
  20. val temp1 = math.sqrt(x.map(math.pow(_,2)).sum)
  21. val temp2 = math.sqrt(y.map(math.pow(_,2)).sum)
  22.  
  23. val denominator = temp1 * temp2
  24. if (denominator == 0) Double.NaN else member / (denominator * 1.0)
  25. }

 

修正余弦相似度

  1. def adjustedCosineSimJblas(x: DoubleMatrix,y: DoubleMatrix): Double = {
  2. require(x.length == y.length,s"SimilarityAlgorithms:DoubleMatrix length do not match: Len(x)=${x.length} and Len(y)" +
  3. s"=${y.length}.")
  4.  
  5. val avg = (x.sum() + y.sum()) / (x.length + y.length)
  6. val v1 = x.sub(avg)
  7. val v2 = y.sub(avg)
  8. v1.dot(v2) / (v1.norm2() * v2.norm2())
  9. }
  10.  
  11. def adjustedCosineSimJblas(x: Array[Double],s"SimilarityAlgorithms:Array length do not match: Len(x)=${x.length} and Len(y)" +
  12. s"=${y.length}.")
  13.  
  14. val v1 = new DoubleMatrix(x)
  15. val v2 = new DoubleMatrix(y)
  16.  
  17. adjustedCosineSimJblas(v1,v2)
  18. }
  19. def adjustedCosineSimilarity(v1: Vector,s"SimilarityAlgorithms:Vector dimensions do not match: Dim(v1)=${v1.size} and Dim(v2)" +
  20. s"=${v2.size}.")
  21. val x = v1.toArray
  22. val y = v2.toArray
  23.  
  24. adjustedCosineSimilarity(x,y)
  25. }
  26.  
  27. def adjustedCosineSimilarity(x: Array[Double],s"SimilarityAlgorithms:Array length do not match: Len(x)=${x.length} and Len(y)" +
  28. s"=${y.length}.")
  29.  
  30. val avg = (x.sum + y.sum) / (x.length + y.length)
  31.  
  32. val member = x.map(_ - avg).zip(y.map(_ - avg)).map(d => d._1 * d._2).sum
  33.  
  34. val temp1 = math.sqrt(x.map(num => math.pow(num - avg,2)).sum)
  35. val temp2 = math.sqrt(y.map(num => math.pow(num - avg,2)).sum)
  36.  
  37. val denominator = temp1 * temp2
  38. if (denominator == 0) Double.NaN else member / (denominator * 1.0)
  39. }

 

大家如果在实际业务处理中有相关需求,可以根据实际场景对上述代码进行优化或改造,当然很多算法框架提供的一些算法是对这些相似度算法的封装,底层还是依赖于这一套,也能帮助大家做更好的了解。比如Spark MLlib在KMeans算法实现中,底层对欧几里得距离的计算实现。

 

推荐文章
重要 | Spark分区并行度决定机制
解析SparkStreaming和Kafka集成的两种方式


关注微信公众号:大数据学习与分享获取更对技术干货

猜你在找的Scala相关文章