增加正则项Regularization to Prevent Overfitting

前端之家收集整理的这篇文章主要介绍了增加正则项Regularization to Prevent Overfitting前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。

1,

model_l1 = tf.estimator.LinearClassifier(
feature_columns=base_columns + crossed_columns,
optimizer=tf.train.FtrlOptimizer(
learning_rate=0.1,
l1_regularization_strength=10.0,
l2_regularization_strength=0.0))

model_l1.train(train_inpf)

results = model_l1.evaluate(test_inpf)
clear_output()
for key in sorted(results):
print(‘%s: %0.2f‘ % (key,results[key]))

 

2,

model_l2 = tf.estimator.LinearClassifier(
feature_columns=base_columns + crossed_columns,
l1_regularization_strength=0.0,
l2_regularization_strength=10.0))

model_l2.train(train_inpf)

results = model_l2.evaluate(test_inpf)clear_output()for key in sorted(results): print(‘%s: %0.2f‘ % (key,results[key]))

猜你在找的正则表达式相关文章