【一维动规】 regular string 正则匹配、Word Break II

前端之家收集整理的这篇文章主要介绍了【一维动规】 regular string 正则匹配、Word Break II前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。

Regular Expression Matching

Total Accepted:13504 Total Submissions:67886 My Submissions

Implement regular expression matching with support for'.'and'*'.

'.' Matches any single character.
'*' Matches zero or more of the preceding element.

The matching should cover the entire input string (not partial).

The function prototype should be:
bool isMatch(const char *s,const char *p)

Some examples:
isMatch("aa","a") → false
isMatch("aa","aa") → true
isMatch("aaa","aa") → false
isMatch("aa","a*") → true
isMatch("aa",".*") → true
isMatch("ab",".*") → true
isMatch("aab","c*a*b") → true
本题解法: 1 二维动规,状态集合 vector< vector<Pair> >,vector<Pair>为p[0,i] 匹配到s的区间集合。
2p/s两个字符串双线性扫描 匹配

Word Break II

Given a stringsand a dictionary of wordsdict,add spaces insto construct a sentence where each word is a valid dictionary word.

Return all such possible sentences.

For example,given
s="catsanddog",
dict=["cat","cats","and","sand","dog"].

A solution is["cats and dog","cat sand dog"].

一维动规, 但是注意需要加一个预处理(处理方法为WORD Break I)。。。

关键点:

预处理: tag【i】记录 【i,n-1】能否被成功划分,从而提前剪枝

不要一开始就计算每个状态的解集,因为大部分状态都没用,而计算起来超级费时间和空间。 从这个角度,为了节省时间除了剪枝,还有记忆化搜索也可以。

代码

void kmp(string &s,string &p,vector<int> &pos){
    if(p.length()<1) return;
    int n = p.length();
    vector<int> pre(n+1,-1);
    pre[1] = 0;
    for(int i=1; i<n; i++){
        int t = pre[i];
        while(t>=0 && p[t]!=p[i]){
            t = pre[t];
        }
        pre[i+1] = t+1;
    }
    int m = s.length();
    for(int i =0,j=0; i<=m; i++,j++){//@error: not i< m
        if(j == n) {
            pos.push_back(i-n);
        }
        while(j>=0 && p[j]!=s[i]){//@error: not s[j]!=p[i]
            j = pre[j];
        }
    }
}
void dfs(const string &s,const vector<string> &words,const vector<vector<pair<int,int> > > &vs,const vector<bool> &tag,vector<string> &res,vector<int> &cur,int idx){
    if(idx >= (int)s.length()){
        string tmp = "";
        for(int j = 0; j<cur.size(); j++){
            tmp+=words[cur[j]];
            if(j<cur.size()-1) tmp+=" ";
        }
        //cout<<tmp<<endl;
        res.push_back(tmp);
        return;
    }
    for(int i = 0; i<vs[idx].size(); i++){
        const pair<int,int> & p = vs[idx][i];
        if(!tag[p.first+1]) continue;// p.first+1 ~ n-1 not valid
        const int num = p.second;
        cur.push_back(num);
        dfs(s,words,vs,tag,res,cur,p.first+1);//@error: not p.first+1
        cur.pop_back();
    }
}

vector<string> wordBreak(string s,unordered_set<string> &dict) {
    int n = s.length();
 
    vector<vector<pair<int,int> > > vs(n);
    vector<bool> tag(n+1,false);
    tag[n] = true;
    vector<string> words;
    for(unordered_set<string>::iterator it = dict.begin(); it!=dict.end(); it++){
        words.push_back(*it);
    }
    
    for(int i =0; i<words.size(); i++){
        vector<int> tmp;
        kmp(s,words[i],tmp);
        int l = words[i].length();
        for(int j = 0; j<tmp.size(); j++){
            int k = tmp[j];
            vs[k].push_back(pair<int,int>(k+l-1,i));
            //cout<<k<<","<<k+l-1<<":"<<i<<endl;
        }
    }
    
    for(int i = n-1; i>=0; i--){
        for(int j = 0; j<vs[i].size(); j++){
            int k = vs[i][j].first;
            // i ~ k
            if(tag[k+1]) { tag[i] = true; break;}
        }
    }
   
   
    vector<string> ans;
    vector<int> cur;
    dfs(s,ans,0);
    return ans;
}

猜你在找的正则表达式相关文章