前端之家收集整理的这篇文章主要介绍了
语料中筛选出英文单词并统计词频,正则切割匹配,
前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。
1.正则的使用匹配
2.dic.setdefault()的使用
3、内建函数enumerate(sequence,start=0)的使用
4、内建函数sorted(),key,reversed参数设置
5、str.lower()string大小写转换
#coding:utf-8
import re
import os
import time
import codecs
PATH = os.path.dirname(__file__)
s = u'what a Beautiful woRld'.lower()
pattern = re.compile(u'[^a-z]+',re.U)#在非英文出进行切割
for con in pattern.split(s.lower()):#将所有英文转化为小写
if len(con) <= 1:
continue
else:
print con
def get_english_words():
'''过滤出语料中夹杂在汉语中的英文单词,并统计出现的词频'''
eng_freq_dic = {}
pattern = re.compile(u'[^a-z]+',re.U)
cut_filename = r'E:\SVN\linguistic_model\data\combine_msg_comment.txt'
with codecs.open(cut_filename,encoding='utf-8') as f:
for line in f.readlines():
for con in pattern.split(line.lower()):
if len(con) <= 1:#过滤掉单字母
continue
else:
count = eng_freq_dic.setdefault(con,0) + 1 #若没有该key,则保存该key且设value其为0。若有则value加1
eng_freq_dic[con] = count#整个英文单词及其出现的频度
eng_filename = os.path.join(PATH,'english_words_original.txt')
eng_to_write_list = sorted([(k,v) for (k,v) in eng_freq_dic.items()],key=lambda x:x[1],reverse=True)#按照词频的高低进行倒序排列
codecs.open(eng_filename,mode='wb',encoding='utf-8').writelines([item[0]+'\t'+str(item[1])+'\n' for item in eng_to_write_list])#词频为int类型,转化为str类型以后写入到本地文件中
def chose_top_n():
'''筛选出top2000,并写入到文件'''
line_list = []
filename = os.path.join(PATH,'english_words_original.txt')
with codecs.open(filename,encoding='utf-8') as f:
for index,line in enumerate(f.readlines(),start=1):#enumerate(sequence,start=0)用法,显示可迭代序列中元素及其位置,start参数可以确定起始下标,默认情况下为0
print index,line.strip()
time.sleep(1)
line_list.append(line)
if index == 2000:
top_filename = os.path.join(PATH,'top_2000_english_words.txt')
codecs.open(top_filename,encoding='utf-8').writelines(line_list)
break
原文链接:https://www.f2er.com/regex/361142.html