Adressing overfitting:
- 减少特征
- 模型选择,自动选择变量
但是特征信息的舍弃会导致信息的丢失
regularization:
- 保留所有特征,但是减少参数theta的值
- 在很多特征时有良好的效果
cost function
对参数惩罚,保证参数较小,防止过拟合
1. fitting well
2. theta is small
这里的lambda参数设置过大会underfitting
正则化回归
正则化回归中的只惩罚非常数项所以,将梯度下降分开:
Normal equation
逻辑回归正则化
无正则化的逻辑回归的cost function
正则化的cost
梯度下降的式子与线性的相同,不同的是h(theta)函数不同
其损失函数为:
整个迭代过程为:
__author__ = 'Chen'
from numpy import *
#calculate the cost
def @H_404_64@costFunction(X,Y,theta):
mse = (theta * X.T - Y.T)
return mse *mse.T
#linearReresion
def @H_404_64@linearRegresion(x,y,type=True,alpha=0.01,lambdas=0.01):
xrow = shape(x)[0]
xcol = shape(x)[1]
x = matrix(x)
Y = matrix(y)
# fill ones
xone = ones((xrow,1))
X = hstack((xone,x))
X = matrix(X)
# normal equiation
if type == True:
#add regularization
for i in range(1,xrow):
X[i,i] += lambdas * 1
theta = (X.T*X).I*X.T*Y
return theta
else:
# gradiant
theta = matrix(random.random(xcol+1))
# iterations
for iteration in range(1,10000):
# return the cost
print costFunction(X,theta)
sums = 0
#gradient method
# adding a regularzation need to add theta(i-1)
temptheta = theta
temptheta[0,0] = 0
for i in range(1,xrow):
sums += (theta*X[i,:].T-Y[i,:])*X[i,:]
theta -= alpha*sums/xrow + lambdas * temptheta/xrow
return theta
x= [[0,1,0],[0,0,1],[1,1]]
y= [[1],[2],[3],[4]]
# calculate linearRegression by normal equation
theta1 = linearRegresion(x,y)
print theta1
#gradient descent
theta2 = linearRegresion(x,False)
print theta2