斯坦福大学机器学习第七课"正则化“学习笔记,本次课程主要包括4部分:
1)The Problem of Overfitting(过拟合问题)
2) Cost Function(成本函数)
3) Regularized Linear Regression(线性回归的正则化)
4) Regularized Logistic Regression(逻辑回归的正则化)
以下是每一部分的详细解读。
1)The Problem of Overfitting(过拟合问题)
拟合问题举例-线性回归之房价问题:
a) 欠拟合(underfit,也称High-bias)
b) 合适的拟合:
c) 过拟合(overfit,也称High variance)
什么是过拟合(Overfitting):
如果我们有非常多的特征,那么所学的Hypothesis有可能对训练集拟合的非常好,但是对于新数据预测的很差。
过拟合例子2-逻辑回归:
与上一个例子相似,依次是欠拟合,合适的拟合以及过拟合:
a) 欠拟合
b) 合适的拟合
c) 过拟合
如何解决过拟合问题:
首先,过拟合问题往往源自过多的特征,例如房价问题,如果我们定义了如下的特征:
那么对于训练集,拟合的会非常完美:
所以针对过拟合问题,通常会考虑两种途径来解决:
a)减少特征的数量:
-人工的选择保留哪些特征;
-模型选择算法(之后的课程会介绍)
b) 正则化
-保留所有的特征,但是降低参数
-正则化的好处是当特征很多时,每一个特征都会对预测y贡献一份合适的力量;
2) Cost Function(成本函数)
依然从房价预测问题开始,这次采用的是多项式回归:
a) 合适的拟合:
b) 过拟合
直观来看,如果我们想解决这个例子中的过拟合问题,最好能将
假设我们对
这样在最小化Cost function的时候,
正则化:
参数
取小一点的值,这样的优点:-“简化”的hypothesis;
-不容易过拟合;
对于房价问题:
-特征包括:
-参数包括:
我们对除
正式的定义-经过正则化的Cost Function有如下的形式:
其中称为正则化参数,我们的目标依然是最小化
例如,对于正则化的线性回归模型来说,我们选择
如果将
-算法依然会正常的工作,将
-算法在去除过拟合问题上会失败;
-算法的结构将是欠拟合(underfitting),即使训练数据非常好也会失败;
-梯度下降算法不一定会收敛;
这样的话,除了
关于正则化,以下引自李航博士《统计学习方法》1.5节关于正则化的一些描述:
模型选择的典型方法是正则化。正则化是结构风险最小化策略的实现,是在经验风险上加一个正则化项(regularizer)或罚项(penalty term)。正则化项一般是模型复杂度的单调递增函数,模型越复杂,正则化值就越大。比如,正则化项可以是模型参数向量的范数。
正则化符合奥卡姆剃刀(Occam's razor)原理。奥卡姆剃刀原理应用于模型选择时变为以下想法:在所有可能选择的模型中,能够很好地解释已知数据并且十分简单才是最好的模型,也就是应该选择的模型。从贝叶斯估计的角度来看,正则化项对应于模型的先验概率。可以假设复杂的模型有较大的先验概率,简单的模型有较小的先验概率。
3) Regularized Linear Regression(线性回归的正则化)
线性回归包括成本函数,梯度下降算法及正规方程解法等几个部分,不清楚的读者可以回顾第二课及第四课的笔记,这里将分别介绍正则化后的线性回归的成本函数,梯度下降算法及正规方程等。
首先来看一下线性回归正则化后的Cost function:
我们的目标依然是最小化
注意,对于参数
同样的正规方程的表达式也需要改变,对于:
X 是m * (n+1)矩阵
y是m维向量:
正则化后的线性回归的Normal Equation的公式为:
假设样本数m小于等于特征数x,如果没有正则化,线性回归Normal eqation如下:
如果
其中括号中的矩阵可逆。
4) Regularized Logistic Regression(逻辑回归的正则化)
和线性回归相似,逻辑回归的Cost Function也需要加上一个正则化项(惩罚项),梯度下降算法也需要区别对待参数\(\theta).
再次回顾一些逻辑回归过拟合的情况,形容下面这个例子:
其中Hypothesis是这样的:
逻辑回归正则化后的Cost Function如下:
梯度下降算法如下:
其中
.参考资料:
http://en.wikipedia.org/wiki/Regularization_%28mathematics%29