hxy系列7-正则化与损失函数

前端之家收集整理的这篇文章主要介绍了hxy系列7-正则化与损失函数前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。

作者:寒小阳
时间:2016年1月。
出处:http://www.jb51.cc/article/p-pcoqrjpw-wk.html
声明:版权所有,转载请联系作者并注明出处

1. 引言

上一节我们讲完了各种激励函数的优缺点和选择,以及网络的大小以及正则化对神经网络的影响。这一节我们讲一讲输入数据预处理、正则化以及损失函数设定的一些事情。

2. 数据与网络的设定

前一节提到前向计算涉及到的组件(主要是神经元)设定。神经网络结构和参数设定完毕之后,我们就得到得分函数/score function(忘记的同学们可以翻看一下之前的博文),总体说来,一个完整的神经网络就是在不断地进行线性映射(权重和input的内积)和非线性映射(部分激励函数作用)的过程。这一节我们会展开来讲讲数据预处理权重初始化损失函数的事情。

2.1 数据预处理

卷积神经网处理图像问题的时候,图像数据有3种常见的预处理可能会用到,如下。我们假定数据表示成矩阵为X,其中我们假定X是[N*D]维矩阵(N是样本数据量,D为单张图片的数据向量长度)。

  • 去均值,这是最常见的图片数据预处理,简单说来,它做的事情就是,对待训练的每一张图片的特征,都减去全部训练集图片的特征均值,这么做的直观意义就是,我们把输入数据各个维度的数据都中心化到0了。使用python的numpy工具包,这一步可以用X -= np.mean(X,axis = 0)轻松实现。当然,其实这里也有不同的做法:简单一点,我们可以直接求出所有像素的均值,然后每个像素点都减掉这个相同的值;稍微优化一下,我们可以在RGB三个颜色通道分别做这件事。
  • 归一化,归一化的直观理解含义是,我们做一些工作去保证所有的维度上数据都在一个变化幅度上。通常我们有两种方法来实现归一化。一个是在数据都去均值之后,每个维度上的数据都除以这个维度上数据的标准差(X /= np.std(X,axis = 0))。另外一种方式是我们除以数据绝对值最大值,以保证所有的数据归一化后都在-1到1之间。多说一句,其实在任何你觉得各维度幅度变化非常大的数据集上,你都可以考虑归一化处理。不过对于图像而言,其实这一步反倒可做可不做,因为大家都知道,像素的值变化区间都在[0,255]之间,所以其实图像输入数据天生幅度就是一致的。

上述两个操作对于数据的作用,画成示意图,如下:

  • PCA和白化/whitening,这是另外一种形式的数据预处理。在经过去均值操作之后,我们可以计算数据的协方差矩阵,从而可以知道数据各个维度之间的相关性,简单示例代码如下:
<code class="language-python hljs  has-numbering" style="display: block; padding: 0px; color: inherit; Box-sizing: border-Box; font-family: 'Source Code Pro',monospace;font-size:undefined; white-space: pre; border-radius: 0px; word-wrap: normal; background: transparent;"><span class="hljs-comment" style="color: rgb(136,0); Box-sizing: border-Box;"># 假定输入数据矩阵X是[N*D]维的</span>
X -= np.mean(X,axis = <span class="hljs-number" style="color: rgb(0,102,102); Box-sizing: border-Box;">0</span>) <span class="hljs-comment" style="color: rgb(136,0); Box-sizing: border-Box;"># 去均值</span>
cov = np.dot(X.T,X) / X.shape[<span class="hljs-number" style="color: rgb(0,102); Box-sizing: border-Box;">0</span>] <span class="hljs-comment" style="color: rgb(136,0); Box-sizing: border-Box;"># 计算协方差</span></code><ul class="pre-numbering" style="Box-sizing: border-Box; position: absolute; width: 50px; top: 0px; left: 0px; margin: 0px; padding: 6px 0px 40px; border-right-width: 1px; border-right-style: solid; border-right-color: rgb(221,221,221); list-style: none; text-align: right; background-color: rgb(238,238,238);"><li style="Box-sizing: border-Box; padding: 0px 5px;">1</li><li style="Box-sizing: border-Box; padding: 0px 5px;">2</li><li style="Box-sizing: border-Box; padding: 0px 5px;">3</li></ul><ul class="pre-numbering" style="Box-sizing: border-Box; position: absolute; width: 50px; top: 0px; left: 0px; margin: 0px; padding: 6px 0px 40px; border-right-width: 1px; border-right-style: solid; border-right-color: rgb(221,238);"><li style="Box-sizing: border-Box; padding: 0px 5px;">1</li><li style="Box-sizing: border-Box; padding: 0px 5px;">2</li><li style="Box-sizing: border-Box; padding: 0px 5px;">3</li></ul>

得到的结果矩阵中元素(i,j)表示原始数据中,第i维和第j维之间的相关性。有意思的是,其实协方差矩阵的对角线包含了每个维度的变化幅度。另外,我们都知道协方差矩阵是对称的,我们可以在其上做矩阵奇异值分解(SVD factorization):

Box-sizing: border-Box; position: relative; overflow-y: hidden; overflow-x: auto; margin-top: 0px; margin-bottom: 1.1em; font-family: 'Source Code Pro',monospace;font-size:undefined; white-space: pre; border-radius: 0px; word-wrap: normal; background: transparent;">U,S,V = np.linalg.svd(cov)</code><ul class="pre-numbering" style="Box-sizing: border-Box; position: absolute; width: 50px; top: 0px; left: 0px; margin: 0px; padding: 6px 0px 40px; border-right-width: 1px; border-right-style: solid; border-right-color: rgb(221,238);"><li style="Box-sizing: border-Box; padding: 0px 5px;">1</li></ul><ul class="pre-numbering" style="Box-sizing: border-Box; position: absolute; width: 50px; top: 0px; left: 0px; margin: 0px; padding: 6px 0px 40px; border-right-width: 1px; border-right-style: solid; border-right-color: rgb(221,238);"><li style="Box-sizing: border-Box; padding: 0px 5px;">1</li></ul>

其中U为特征向量,我们如果相对原始数据(去均值之后)做去相关操作,只需要进行如下运算:

Box-sizing: border-Box; position: relative; overflow-y: hidden; overflow-x: auto; margin-top: 0px; margin-bottom: 1.1em; font-family: 'Source Code Pro',monospace;font-size:undefined; white-space: pre; border-radius: 0px; word-wrap: normal; background: transparent;">Xrot = np.dot(X,U)</code><ul class="pre-numbering" style="Box-sizing: border-Box; position: absolute; width: 50px; top: 0px; left: 0px; margin: 0px; padding: 6px 0px 40px; border-right-width: 1px; border-right-style: solid; border-right-color: rgb(221,238);"><li style="Box-sizing: border-Box; padding: 0px 5px;">1</li></ul>

这么理解一下可能更好,U是一组正交基向量。所以我们可以看做把原始数据X投射到这组维度保持不变的正交基底上,从而也就完成了对原始数据的去相关。如果去相关之后你再求一下Xrot的协方差矩阵,你会发现这时候的协方差矩阵是一个对角矩阵了。而numpy中的np.linalg.svd更好的一个特性是,它返回的U是对特征值排序过的,这也就意味着,我们可以用它进行降维操作。我们可以只取top的一些特征向量,然后做和原始数据做矩阵乘法,这个时候既降维减少了计算量,同时又保存下了绝大多数的原始数据信息,这就是所谓的主成分分析/PCA

Box-sizing: border-Box; position: relative; overflow-y: hidden; overflow-x: auto; margin-top: 0px; margin-bottom: 1.1em; font-family: 'Source Code Pro',monospace;font-size:undefined; white-space: pre; border-radius: 0px; word-wrap: normal; background: transparent;">Xrot_reduced = np.dot(X,U[:,:<span class="hljs-number" style="color: rgb(0,102); Box-sizing: border-Box;">100</span>])</code><ul class="pre-numbering" style="Box-sizing: border-Box; position: absolute; width: 50px; top: 0px; left: 0px; margin: 0px; padding: 6px 0px 40px; border-right-width: 1px; border-right-style: solid; border-right-color: rgb(221,238);"><li style="Box-sizing: border-Box; padding: 0px 5px;">1</li></ul>

这个操作之后,我们把原始数据集矩阵从[N*D]降维到[N*100],保存了前100个能包含绝大多数数据信息的维度。实际应用中,你在PCA降维之后的数据集上,做各种机器学习的训练,在节省空间和时间的前提下,依旧能有很好的训练准确度。

最后我们再提一下whitening操作。所谓whitening,就是把各个特征轴上的数据除以对应特征值,从而达到在每个特征轴上都归一化幅度的结果。whitening变换的几何意义和理解是,如果输入的数据是多变量高斯,那whitening之后的 数据是一个均值为0而不同方差的高斯矩阵。这一步简单代码实现如下:

Box-sizing: border-Box; position: relative; overflow-y: hidden; overflow-x: auto; margin-top: 0px; margin-bottom: 1.1em; font-family: 'Source Code Pro',0); Box-sizing: border-Box;">#白化数据</span>
Xwhite = Xrot / np.sqrt(S + <span class="hljs-number" style="color: rgb(0,102); Box-sizing: border-Box;">1e-5</span>)</code><ul class="pre-numbering" style="Box-sizing: border-Box; position: absolute; width: 50px; top: 0px; left: 0px; margin: 0px; padding: 6px 0px 40px; border-right-width: 1px; border-right-style: solid; border-right-color: rgb(221,238);"><li style="Box-sizing: border-Box; padding: 0px 5px;">1</li><li style="Box-sizing: border-Box; padding: 0px 5px;">2</li></ul><ul class="pre-numbering" style="Box-sizing: border-Box; position: absolute; width: 50px; top: 0px; left: 0px; margin: 0px; padding: 6px 0px 40px; border-right-width: 1px; border-right-style: solid; border-right-color: rgb(221,238);"><li style="Box-sizing: border-Box; padding: 0px 5px;">1</li><li style="Box-sizing: border-Box; padding: 0px 5px;">2</li></ul>

提个醒:whitening操作会有严重化噪声的可能。注意到我们在上述代码中,分母的部分加入了一个很小的数1e-5,以防止出现除以0的情况。但是数据中的噪声部分可能会因whitening操作而变大,因为这个操作的本质是把输入的每个维度都拉到差不多的幅度,那么本不相关的有微弱幅度变化的噪声维度,也被拉到了和其他维度同样的幅度。当然,我们适当提高分母中的安全因子(1e-5)可以在一定程度上缓解这个问题。

下图为原始数据到去相关白化之后的数据分布示意图:

我们来看看真实数据集上的操作与得到的结果,也许能对这些过程有更清晰一些的认识。大家都还记得CIFAR-10图像数据集吧。训练集大小为50000*3072,也就是说,每张图片都被展成一个3072维度的列向量了。然后我们对原始50000*3072数据矩阵做SVD分解,进行上述一些操作,再可视化一下,得到的结果示意图如下:

我们稍加解释一下,最左边是49张原始图片;左起第2幅图是最3072个特征向量中最top的144个,这144个特征向量包含了绝大多数数据变量信息,而其实它们代表的是图片中低频的信息;左起第3幅图表示PCA降维操作之后的49张图片,使用上面求得的144个特征向量。我们可以观察到图片好像被蒙上了一层东西一样,模糊化了,这也就表明了我们的top144个特征向量捕捉到的都是图像的低频信息,不过我们发现图像的绝大多数信息确实被保留下来了;最右图是whitening的144个数通过乘以U.transpose()[:144,:]还原回图片的样子,有趣的是,我们发现,现在低频信息基本都被滤掉了,剩下一些高频信息被放大呈现。

实际工程中,因为这个部分讲到数据预处理,我们就把基本的几种数据预处理都讲了一遍,但实际卷积神经网中,我们并没有用到去相关和whitening操作。当然,去均值是非常非常重要的,而每个像素维度的归一化也是常用的操作。

特别说明,需要特别说明的一点是,上述的预处理操作,一定都是在训练集上先预算的,然后应用在交叉验证/测试集上的。举个例子,有些同学会先把所有的图片放一起,求均值,然后减掉均值,再把这份数据分作训练集和测试集,这是不对的亲!!!

2.2 权重初始化

我们之前已经看过一个完整的神经网络,是怎么样通过神经元和连接搭建起来的,以及如何对数据做预处理。在训练神经网络之前,我们还有一个任务要做,那就是初始化参数。

错误的想法:全部初始化为0,有些同学说,那既然要训练和收敛嘛,初始值就随便设定,简单一点就全设为0好了。亲,这样是绝对不行的!!!为啥呢?我们在神经网络训练完成之前,是不可能预知神经网络最后的权重具体结果的,但是根据我们归一化后的数据,我们可以假定,大概有半数左右的权重是正数,而另外的半数是负数。但设定全部初始权重都为0的结果是,网络中每个神经元都计算出一样的结果,然后在反向传播中有一样的梯度结果,因此迭代之后的变化情况也都一样,这意味着这个神经网络的权重没有办法差异化,也就没有办法学习到东西。

很小的随机,其实我们依旧希望初始的权重是较小的数,趋于0,但是就像我们刚刚讨论过的一样,不要真的是0。综合上述想法,在实际场景中,我们通常会把初始权重设定为非常小的数字,然后正负尽量一半一半。这样,初始的时候权重都是不一样的很小随机数,然后迭代过程中不会再出现迭代一致的情况。举个例子,我们可能可以这样初始化一个权重矩阵W=0.0001*np.random.randn(D,H)。这个初始化的过程,使得每个神经元的权重向量初始化为多维高斯中的随机采样向量,所以神经元的初始权重值指向空间中的随机方向。

特别说明:其实不一定更小的初始值会比大值有更好的效果。我们这么想,一个有着非常小的权重的神经网络在后向传播过程中,回传的梯度也是非常小的。这样回传的”信号”流会相对也较弱,对于层数非常多的深度神经网络,这也是一个问题,回传到最前的迭代梯度已经很小了。

方差归一化,上面提到的建议有一个小问题,对于随机初始化的神经元参数下的输出,其分布的方差随着输入的数量,会增长。我们实际上可以通过除以总输入数目的平方根,归一化每个神经元的输出方差到1。也就是说,我们倾向于初始化神经元的权重向量为w = np.random.randn(n) / sqrt(n),其中n为输入数。

我们从数学的角度,简单解释一下,为什么上述操作可以归一化方差。考虑在激励函数之前的权重w与输入x的内积 s=niwixi 部分,我们计算一下 s 的方差:

Var(s)=Var@H_258_301@(inwixi)=inVar(w@H_220_404@ixi)=in[E(wi)]2Var(xi)+E[(xi)]2Var(wi)+Var(xi)Var(wi)=inVar(xi)Var(wi)=(nVar(w))Var(x)

注意,这个推导的前2步用到了方差的性质。第3步我们假定输入均值为0,因此 E[xi]=E[wi]=0 。不过这是我们的一个假设,实际情况下并不一定是这样的,比如ReLU单元的均值就是正的。最后一步我们假定 wi,xi 是独立分布。我们想让s的方差和输入x的方差一致,因此我们想让w的方差取值为1/n,又因为我们有公式 Var(aX)=a2Var(X) ,所以a应该取值为 a=1/n@H_404_986@− ,numpy里的实现为w = np.random.randn(n) / sqrt(n)

对于初始化权重还有一些类似的研究和建议,比如说Glorot在论文Understanding the difficulty of training deep feedforward neural networks就推荐使用能满足 Var(w)=2/(nin+nout) 的权重初始化。其中 nin,nout 是前一层和后一层的神经元个数。而另外一篇比较新的论文Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification,则指出尤其对于ReLU神经元,我们初始化方差应该为2.0/n,也就是w = np.random.randn(n) * sqrt(2.0/n)目前的神经网络中使用了很多ReLU单元,因此这个设定其实在实际应用中使用最多。

偏移量/bias初始化:相对而言,bias项初始化就简单一些。我们很多时候简单起见,直接就把它们都设为0.在ReLU单元中,有些同学会使用很小的数字(比如0.01)来代替0作为所有bias项的初始值,他们解释说这样也能保证ReLU单元一开始就是被激活的,因此反向传播过程中不会终止掉回传的梯度。不过似乎实际的实验过程中,这个优化并不是每次都能起到作用的,因此很多时候我们还是直接把bias项都初始化为0。

2.3 正则化

在前一节里我们说了我们要通过正则化来控制神经网络,使得它不那么容易过拟合。有几种正则化的类型供选择:

  • L2正则化,这个我们之前就提到过,非常常见。实现起来也很简单,我们在损失函数里,加入对每个参数的惩罚度。也就是说,对于每个权重 w ,我们在损失函数里加入一项 12λw2 ,其中 λ 是我们可调整的正则化强度。顺便说一句,这里在前面加上1/2的原因是,求导/梯度的时候,刚好变成 @H_516_1301@λw 而不是 2λw 。L2正则化理解起来也很简单,它对于特别大的权重有很高的惩罚度,以求让权重的分配均匀一些,而不是集中在某一小部分的维度上。我们再想想,加入L2正则化项,其实意味着,在梯度下降参数更新的时候,每个权重以W += -lambda*W的程度被拉向0。

  • L1正则化,这也是一种很常见的正则化形式。在L1正则化中,我们对于每个权重 w 的惩罚项为 λ|w| 。有时候,你甚至可以看到大神们混着L1和L2正则化用,也就是说加入惩罚项 @H_716_1404@λ1w+λ2w2 ,L1正则化有其独特的特性,它会让模型训练过程中,权重特征向量逐渐地稀疏化,这意味着到最后,我们只留下了对结果影响最大的一部分权重,而其他不相关的输入(例如『噪声』)因为得不到权重被抑制。所以通常L2正则化后的特征向量是一组很分散的小值,而L1正则化只留下影响较大的权重。在实际应用中,如果你不是特别要求只保留部分特征,那么L2正则化通常能得到比L1正则化更好的效果

  • 最大范数约束,另外一种正则化叫做最大范数约束,它直接限制了一个上行的权重边界,然后约束每个神经元上的权重都要满足这个约束。实际应用中是这样实现的,我们不添加任何的惩罚项,就按照正常的损失函数计算,只不过在得到每个神经元的权重向量 w 之后约束它满足 w2<c 。有些人提到这种正则化方式帮助他们提高最后的模型效果。另外,这种正则化方式倒是有一点很吸引人:在神经网络训练学习率设定很高的时候,它也能很好地约束住权重更新变化,不至于直接挂掉。

  • Dropout,亲,这个是我们实际神经网络训练中,用的非常多的一种正则化手段,同时也相当有效。Srivastava等人的论文Dropout: A Simple Way to Prevent Neural Networks from Overfitting最早提到用dropout这种方式作为正则化手段。一句话概括它,就是:在训练过程中,我们对每个神经元,都以概率p保持它是激活状态,1-p的概率直接关闭它。

下图是一个3层的神经网络的dropout示意图:




可以这么理解,在训练过程中呢,我们对全体神经元,以概率p做了一个采样,只有选出的神经元要进行参数更新。所以最后就从左图的全连接到右图的Dropout过后神经元连接图了。需要多说一句的是,在测试阶段,我们不用dropout,而是直接从概率的角度,对权重配以一个概率值。

简单的Dropout代码如下(这是简易实现版本,但是不建议使用,我们会分析为啥,并在之后给出优化版):

Box-sizing: border-Box; position: relative; overflow-y: hidden; overflow-x: auto; margin-top: 0px; margin-bottom: 1.1em; font-family: 'Source Code Pro',monospace;font-size:undefined; white-space: pre; border-radius: 0px; word-wrap: normal; background: transparent;">
p = <span class="hljs-number" style="color: rgb(0,102); Box-sizing: border-Box;">0.5</span> <span class="hljs-comment" style="color: rgb(136,0); Box-sizing: border-Box;"># 设定dropout的概率,也就是保持一个神经元激活状态的概率</span>

<span class="hljs-function" style="Box-sizing: border-Box;"><span class="hljs-keyword" style="color: rgb(0,136); Box-sizing: border-Box;">def</span> <span class="hljs-title" style="Box-sizing: border-Box;">train_step</span><span class="hljs-params" style="color: rgb(102,102); Box-sizing: border-Box;">(X)</span>:</span>
  <span class="hljs-string" style="color: rgb(0,0); Box-sizing: border-Box;">""" X contains the data """</span>

  <span class="hljs-comment" style="color: rgb(136,0); Box-sizing: border-Box;"># 3层神经网络前向计算</span>
  H1 = np.maximum(<span class="hljs-number" style="color: rgb(0,102); Box-sizing: border-Box;">0</span>,np.dot(W1,X) + b1)
  U1 = np.random.rand(*H1.shape) < p <span class="hljs-comment" style="color: rgb(136,0); Box-sizing: border-Box;"># 第一次Dropout</span>
  H1 *= U1 <span class="hljs-comment" style="color: rgb(136,0); Box-sizing: border-Box;"># drop!</span>
  H2 = np.maximum(<span class="hljs-number" style="color: rgb(0,np.dot(W2,H1) + b2)
  U2 = np.random.rand(*H2.shape) < p <span class="hljs-comment" style="color: rgb(136,0); Box-sizing: border-Box;"># 第二次Dropout</span>
  H2 *= U2 <span class="hljs-comment" style="color: rgb(136,0); Box-sizing: border-Box;"># drop!</span>
  out = np.dot(W3,H2) + b3

  <span class="hljs-comment" style="color: rgb(136,0); Box-sizing: border-Box;"># 反向传播: 计算梯度... (这里省略)</span>
  <span class="hljs-comment" style="color: rgb(136,0); Box-sizing: border-Box;"># 参数更新... (这里省略)</span>

<span class="hljs-function" style="Box-sizing: border-Box;"><span class="hljs-keyword" style="color: rgb(0,136); Box-sizing: border-Box;">def</span> <span class="hljs-title" style="Box-sizing: border-Box;">predict</span><span class="hljs-params" style="color: rgb(102,102); Box-sizing: border-Box;">(X)</span>:</span>
  <span class="hljs-comment" style="color: rgb(136,0); Box-sizing: border-Box;"># 加上Dropout之后的前向计算</span>
  H1 = np.maximum(<span class="hljs-number" style="color: rgb(0,X) + b1) * p 
  H2 = np.maximum(<span class="hljs-number" style="color: rgb(0,H1) + b2) * p 
  out = np.dot(W3,H2) + b3</code><ul class="pre-numbering" style="Box-sizing: border-Box; position: absolute; width: 50px; top: 0px; left: 0px; margin: 0px; padding: 6px 0px 40px; border-right-width: 1px; border-right-style: solid; border-right-color: rgb(221,238);"><li style="Box-sizing: border-Box; padding: 0px 5px;">1</li><li style="Box-sizing: border-Box; padding: 0px 5px;">2</li><li style="Box-sizing: border-Box; padding: 0px 5px;">3</li><li style="Box-sizing: border-Box; padding: 0px 5px;">4</li><li style="Box-sizing: border-Box; padding: 0px 5px;">5</li><li style="Box-sizing: border-Box; padding: 0px 5px;">6</li><li style="Box-sizing: border-Box; padding: 0px 5px;">7</li><li style="Box-sizing: border-Box; padding: 0px 5px;">8</li><li style="Box-sizing: border-Box; padding: 0px 5px;">9</li><li style="Box-sizing: border-Box; padding: 0px 5px;">10</li><li style="Box-sizing: border-Box; padding: 0px 5px;">11</li><li style="Box-sizing: border-Box; padding: 0px 5px;">12</li><li style="Box-sizing: border-Box; padding: 0px 5px;">13</li><li style="Box-sizing: border-Box; padding: 0px 5px;">14</li><li style="Box-sizing: border-Box; padding: 0px 5px;">15</li><li style="Box-sizing: border-Box; padding: 0px 5px;">16</li><li style="Box-sizing: border-Box; padding: 0px 5px;">17</li><li style="Box-sizing: border-Box; padding: 0px 5px;">18</li><li style="Box-sizing: border-Box; padding: 0px 5px;">19</li><li style="Box-sizing: border-Box; padding: 0px 5px;">20</li><li style="Box-sizing: border-Box; padding: 0px 5px;">21</li><li style="Box-sizing: border-Box; padding: 0px 5px;">22</li><li style="Box-sizing: border-Box; padding: 0px 5px;">23</li></ul><ul class="pre-numbering" style="Box-sizing: border-Box; position: absolute; width: 50px; top: 0px; left: 0px; margin: 0px; padding: 6px 0px 40px; border-right-width: 1px; border-right-style: solid; border-right-color: rgb(221,238);"><li style="Box-sizing: border-Box; padding: 0px 5px;">1</li><li style="Box-sizing: border-Box; padding: 0px 5px;">2</li><li style="Box-sizing: border-Box; padding: 0px 5px;">3</li><li style="Box-sizing: border-Box; padding: 0px 5px;">4</li><li style="Box-sizing: border-Box; padding: 0px 5px;">5</li><li style="Box-sizing: border-Box; padding: 0px 5px;">6</li><li style="Box-sizing: border-Box; padding: 0px 5px;">7</li><li style="Box-sizing: border-Box; padding: 0px 5px;">8</li><li style="Box-sizing: border-Box; padding: 0px 5px;">9</li><li style="Box-sizing: border-Box; padding: 0px 5px;">10</li><li style="Box-sizing: border-Box; padding: 0px 5px;">11</li><li style="Box-sizing: border-Box; padding: 0px 5px;">12</li><li style="Box-sizing: border-Box; padding: 0px 5px;">13</li><li style="Box-sizing: border-Box; padding: 0px 5px;">14</li><li style="Box-sizing: border-Box; padding: 0px 5px;">15</li><li style="Box-sizing: border-Box; padding: 0px 5px;">16</li><li style="Box-sizing: border-Box; padding: 0px 5px;">17</li><li style="Box-sizing: border-Box; padding: 0px 5px;">18</li><li style="Box-sizing: border-Box; padding: 0px 5px;">19</li><li style="Box-sizing: border-Box; padding: 0px 5px;">20</li><li style="Box-sizing: border-Box; padding: 0px 5px;">21</li><li style="Box-sizing: border-Box; padding: 0px 5px;">22</li><li style="Box-sizing: border-Box; padding: 0px 5px;">23</li></ul>

上述代码中,在train_step函数中,我们做了2次Dropout。我们甚至可以在输入层做一次dropout。反向传播过程保持不变,除了我们要考虑一下U1,U2

很重要的一点是,大家仔细看predict函数部分,我们不再dropout了,而是对于每个隐层的输出,都用概率p做了一个幅度变换。可以从数学期望的角度去理解这个做法,我们考虑一个神经元的输出为x(没有dropout的情况下),它的输出的数学期望为 px+(1p)0 ,那我们在测试阶段,如果直接把每个输出x都做变换 xpx ,其实是可以保持一样的数学期望的。

上述代码的写法有一些缺陷,我们必须在测试阶段对每个神经的输出都以p的概率输出。考虑到实际应用中,测试阶段对于时间的要求非常高,我们可以考虑反着来,代码实现的时候用inverted dropout,即在训练阶段就做相反的幅度变换/scaling(除以p),这样在测试阶段,我们可以直接把权重拿来使用,而不用附加很多步用p做scaling的过程。inverted dropout的示例代码如下:

Box-sizing: border-Box; position: relative; overflow-y: hidden; overflow-x: auto; margin-top: 0px; margin-bottom: 1.1em; font-family: 'Source Code Pro',monospace;font-size:undefined; white-space: pre; border-radius: 0px; word-wrap: normal; background: transparent;"><span class="hljs-string" style="color: rgb(0,0); Box-sizing: border-Box;">""" 
Inverted Dropout的版本,把本该花在测试阶段的时间,转移到训练阶段,从而提高testing部分的速度
"""</span>

p = <span class="hljs-number" style="color: rgb(0,0); Box-sizing: border-Box;"># dropout的概率,也就是保持一个神经元激活状态的概率</span>

<span class="hljs-function" style="Box-sizing: border-Box;"><span class="hljs-keyword" style="color: rgb(0,0); Box-sizing: border-Box;"># f3层神经网络前向计算</span>
  H1 = np.maximum(<span class="hljs-number" style="color: rgb(0,X) + b1)
  U1 = (np.random.rand(*H1.shape) < p) / p <span class="hljs-comment" style="color: rgb(136,0); Box-sizing: border-Box;"># 注意到这个dropout中我们除以p,做了一个inverted dropout</span>
  H1 *= U1 <span class="hljs-comment" style="color: rgb(136,H1) + b2)
  U2 = (np.random.rand(*H2.shape) < p) / p <span class="hljs-comment" style="color: rgb(136,0); Box-sizing: border-Box;"># 这个dropout中我们除以p,做了一个inverted dropout</span>
  H2 *= U2 <span class="hljs-comment" style="color: rgb(136,0); Box-sizing: border-Box;"># 直接前向计算,无需再乘以p</span>
  H1 = np.maximum(<span class="hljs-number" style="color: rgb(0,X) + b1) 
  H2 = np.maximum(<span class="hljs-number" style="color: rgb(0,H1) + b2)
  out = np.dot(W3,238);"><li style="Box-sizing: border-Box; padding: 0px 5px;">1</li><li style="Box-sizing: border-Box; padding: 0px 5px;">2</li><li style="Box-sizing: border-Box; padding: 0px 5px;">3</li><li style="Box-sizing: border-Box; padding: 0px 5px;">4</li><li style="Box-sizing: border-Box; padding: 0px 5px;">5</li><li style="Box-sizing: border-Box; padding: 0px 5px;">6</li><li style="Box-sizing: border-Box; padding: 0px 5px;">7</li><li style="Box-sizing: border-Box; padding: 0px 5px;">8</li><li style="Box-sizing: border-Box; padding: 0px 5px;">9</li><li style="Box-sizing: border-Box; padding: 0px 5px;">10</li><li style="Box-sizing: border-Box; padding: 0px 5px;">11</li><li style="Box-sizing: border-Box; padding: 0px 5px;">12</li><li style="Box-sizing: border-Box; padding: 0px 5px;">13</li><li style="Box-sizing: border-Box; padding: 0px 5px;">14</li><li style="Box-sizing: border-Box; padding: 0px 5px;">15</li><li style="Box-sizing: border-Box; padding: 0px 5px;">16</li><li style="Box-sizing: border-Box; padding: 0px 5px;">17</li><li style="Box-sizing: border-Box; padding: 0px 5px;">18</li><li style="Box-sizing: border-Box; padding: 0px 5px;">19</li><li style="Box-sizing: border-Box; padding: 0px 5px;">20</li><li style="Box-sizing: border-Box; padding: 0px 5px;">21</li><li style="Box-sizing: border-Box; padding: 0px 5px;">22</li><li style="Box-sizing: border-Box; padding: 0px 5px;">23</li><li style="Box-sizing: border-Box; padding: 0px 5px;">24</li></ul><ul class="pre-numbering" style="Box-sizing: border-Box; position: absolute; width: 50px; top: 0px; left: 0px; margin: 0px; padding: 6px 0px 40px; border-right-width: 1px; border-right-style: solid; border-right-color: rgb(221,238);"><li style="Box-sizing: border-Box; padding: 0px 5px;">1</li><li style="Box-sizing: border-Box; padding: 0px 5px;">2</li><li style="Box-sizing: border-Box; padding: 0px 5px;">3</li><li style="Box-sizing: border-Box; padding: 0px 5px;">4</li><li style="Box-sizing: border-Box; padding: 0px 5px;">5</li><li style="Box-sizing: border-Box; padding: 0px 5px;">6</li><li style="Box-sizing: border-Box; padding: 0px 5px;">7</li><li style="Box-sizing: border-Box; padding: 0px 5px;">8</li><li style="Box-sizing: border-Box; padding: 0px 5px;">9</li><li style="Box-sizing: border-Box; padding: 0px 5px;">10</li><li style="Box-sizing: border-Box; padding: 0px 5px;">11</li><li style="Box-sizing: border-Box; padding: 0px 5px;">12</li><li style="Box-sizing: border-Box; padding: 0px 5px;">13</li><li style="Box-sizing: border-Box; padding: 0px 5px;">14</li><li style="Box-sizing: border-Box; padding: 0px 5px;">15</li><li style="Box-sizing: border-Box; padding: 0px 5px;">16</li><li style="Box-sizing: border-Box; padding: 0px 5px;">17</li><li style="Box-sizing: border-Box; padding: 0px 5px;">18</li><li style="Box-sizing: border-Box; padding: 0px 5px;">19</li><li style="Box-sizing: border-Box; padding: 0px 5px;">20</li><li style="Box-sizing: border-Box; padding: 0px 5px;">21</li><li style="Box-sizing: border-Box; padding: 0px 5px;">22</li><li style="Box-sizing: border-Box; padding: 0px 5px;">23</li><li style="Box-sizing: border-Box; padding: 0px 5px;">24</li></ul>

对于dropout这个部分如果你有更深的兴趣,欢迎阅读以下文献:
1) 2014 Srivastava 的论文Dropout paper
2)Dropout Training as Adaptive Regularization

  • bias项的正则化,其实我们在之前的博客中提到过,我们大部分时候并不对偏移量项做正则化,因为它们也没有和数据直接有乘法等交互,也就自然不会影响到最后结果中某个数据维度的作用。不过如果你愿意对它做正则化,倒也不会影响最后结果,毕竟总共有那么多权重项,才那么些bias项,所以一般也不会影响结果。

实际应用中:我们最常见到的是,在全部的交叉验证集上使用L2正则化,同时我们在每一层之后用dropout,很常见的dropout概率为p=0.5,你也可以通过交叉验证去调整这个值。

@H_301_1709@ 2.4 损失函数

刚才讨论了数据预处理、权重初始化与正则化相关的问题。现在我们回到训练需要的关键之一:损失函数。对于这么复杂的神经网络,我们也得有一个评估准则去评估预测值和真实结果之间的吻合度,也就是损失函数。神经网络里的损失函数,实际上是计算出了每个样本上的loss,再求平均之后的一个形式,即 L=@H_404_1725@1NiLi ,其中N是训练样本数。

2.4.1 分类问题

  • 分类问题是到目前为止我们一直在讨论的。我们假定一个数据集中每个样本都有唯一一个正确的标签/类别。我们之前提到过有两种损失函数可以使用,其一是SVM的hinge loss:

Li=jyimax(0,fjfyi+1)

另外一个是Softmax分类器中用到的互熵损失:

Li=logefyijefj

  • 问题:特别多的类别数。当类别标签特别特别多的时候(比如ImageNet包含22000个类别),层次化的Softmax,它将类别标签建成了一棵树,这样任何一个类别,其实就对应tree的一条路径,然后我们在每个树的结点上都训练一个Softmax以区分是左分支还是右分支。

  • 属性分类,上述的两种损失函数都假定,对于每个样本,我们只有一个正确的答案 yi 。但是在有些场景下, yi 是一个二值的向量,每个元素都代表有没有某个属性,这时候我们怎么办呢?举个例子说,Instagram上的图片可以看作一大堆hashtag里的一个tag子集,所有一张图片可以有多个tag。对于这种情况,大家可能会想到一个最简单的处理方法,就是对每个属性值都建一个二分类分类器。比如,对应某个类别的二分类器可能有如下形式的损失函数

Li=jmax(0,1@H_355_2301@yijfj)

其中的求和是针对有所的类别j,而 yij 是1或者-1(取决于第i个样本是否有第j个属性标签),打分向量 @H_20_2403@fj 在类别/标签被预测到的情况下为正,其他情况为负。注意到如果正样本有比+1小的得分,或者负样本有比-1大的得分,那么损失/loss就一直在累积。

另外一个也许有效的解决办法是,我们可以对每个属性,都单独训练一个逻辑回归分类器,一个二分类的逻辑回归分类器只有0,1两个类别,属于1的概率为:

P(y=1x;w,b)=11+@H_403_2493@e@H_78_2502@(wTx+b)=σ(wTx+b)

又因为0,1两类的概率和为1,所以归属于类别0的概率为 P(y=0x;w,b)=1P(y=1x;w,b) 。一个样本在 σ(wTx+b)>0.5 的情况下被判定为1,对应sigmoid函数化简一下,对应的是得分 wTx+b>0 。这时候的损失函数可以定义为最大化似然概率的形式,也就是:

Li=jyijlog(σ(fj))+(1yij)log(1σ(fj))

其中标签 yij 为1(正样本)或者0(负样本),而@H_746_3014@ @H_903_3016@@H_889_3017@@H_877_3019@δ 是sigmoid函数

2.4.2 回归问题

回归是另外一类机器学习问题,主要用于预测连续值属性,比如房子的价格或者图像中某些东西的长度等。对于回归问题,我们一般计算预测值和实际值之间的差值,然后再求L2范数或者L1范数用于衡量。其中对一个样本(一张图片)计算的L2范数损失为:

Li=fyi22

而L1范数损失函数是如下的形式:

Li=fyi1=jfj(yi)j

注意

  • 回归问题中用到的L2范数损失,比分类问题中的Softmax分类器用到的损失函数,更难优化。直观想一想这个问题,一个神经网络最后输出离散的判定类别,比训练它去输出一个个和样本结果对应的连续值,要简单多了。
  • 我们前面的博文中提到过,其实Softmax这种分类器,对于输出的打分结果具体值是不怎么在乎的,它只在乎各个类别之间的打分幅度有没有差很多(比如二分类两个类别的得分是1和9,与0.1和0.9)。
  • 再一个,L2范数损失健壮性更差一些,异常点和噪声都可能改变损失函数的幅度,而带来大的梯度偏差。
  • 一般情况下,对于回归问题,我们都会首先考虑,这个问题能否转化成对应的分类问题,比如说我们把输出值划分成不同的区域(切成一些桶)。举个例子,如果我们要预测一部电影的豆瓣打分,我们可以考虑把得分结果分成1-5颗星,而转化成一个分类问题。
  • 如果你觉得问题确实没办法转化成分类问题,那要小心使用L2范数损失:举个例子,在神经网络中,在L2损失函数之前使用dropout是不合适的。

如果我们遇到回归问题,首先要想想,是否完全没有可能把结果离散化之后,把这个问题转化成一个分类问题。

3. 总结

总结一下:

  • 在很多神经网络的问题中,我们都建议对数据特征做预处理,去均值,然后归一化到[-1,1]之间。
  • 从一个标准差为 2/n@H_404_986@− 的高斯分布中初始化权重,其中n为输入的个数。
  • 使用L2正则化(或者最大范数约束)和dropout来减少神经网络的过拟合。
  • 对于分类问题,我们最常见的损失函数依旧是SVM hinge loss和Softmax互熵损失。

参考资料与原文

cs231n 神经网络数据预处理正则化与损失函数

猜你在找的正则表达式相关文章