我就废话不多说了,直接上代码吧!
from os import listdir import os from time import time import torch.utils.data as data import torchvision.transforms as transforms from torch.utils.data import DataLoader def printProgressBar(iteration,total,prefix='',suffix='',decimals=1,length=100,fill='=',empty=' ',tip='>',begin='[',end=']',done="[DONE]",clear=True): percent = ("{0:." + str(decimals) + "f}").format(100 * (iteration / float(total))) filledLength = int(length * iteration // total) bar = fill * filledLength if iteration != total: bar = bar + tip bar = bar + empty * (length - filledLength - len(tip)) display = '\r{prefix}{begin}{bar}{end} {percent}%{suffix}' \ .format(prefix=prefix,begin=begin,bar=bar,end=end,percent=percent,suffix=suffix) print(display,end=''),# comma after print() required for python 2 if iteration == total: # print with newline on complete if clear: # display given complete message with spaces to 'erase' prevIoUs progress bar finish = '\r{prefix}{done}'.format(prefix=prefix,done=done) if hasattr(str,'decode'): # handle python 2 non-unicode strings for proper length measure finish = finish.decode('utf-8') display = display.decode('utf-8') clear = ' ' * max(len(display) - len(finish),0) print(finish + clear) else: print('') class DatasetFromFolder(data.Dataset): def __init__(self,image_dir): super(DatasetFromFolder,self).__init__() self.photo_path = os.path.join(image_dir,"a") self.sketch_path = os.path.join(image_dir,"b") self.image_filenames = [x for x in listdir(self.photo_path) if is_image_file(x)] transform_list = [transforms.ToTensor(),transforms.Normalize((0.5,0.5,0.5),(0.5,0.5))] self.transform = transforms.Compose(transform_list) def __getitem__(self,index): # Load Image input = load_img(os.path.join(self.photo_path,self.image_filenames[index])) input = self.transform(input) target = load_img(os.path.join(self.sketch_path,self.image_filenames[index])) target = self.transform(target) return input,target def __len__(self): return len(self.image_filenames) if __name__ == '__main__': dataset = DatasetFromFolder("./dataset/facades/train") DataLoader = DataLoader(dataset=dataset,num_workers=8,batch_size=1,shuffle=True) total = len(DataLoader) for epoch in range(20): t0 = time() for i,batch in enumerate(DataLoader): real_a,real_b = batch[0],batch[1] printProgressBar(i + 1,total + 1,length=20,prefix='Epoch %s ' % str(1),suffix=',d_loss: %d' % 1) printProgressBar(total,done='Epoch [%s] ' % str(epoch) + ',time: %.2f s' % (time() - t0) )
以上这篇pytorch 批次遍历数据集打印数据的例子就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。