python:目标检测模型预测准确度计算方式(基于IoU)

前端之家收集整理的这篇文章主要介绍了python:目标检测模型预测准确度计算方式(基于IoU)前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。

训练完@R_502_292@模型之后,需要评价其性能,在不同的阈值下的准确度是多少,有没有漏检,在这里基于IoU(Intersection over Union)来计算。

希望能提供一些思路,如果觉得有用欢迎赞我表扬我~

IoU的值可以理解为系统预测出来的框与原来图片标记的框的重合程度。系统预测出来的框是利用@R_502_292@模型对测试数据集进行识别得到的。

计算方法即检测结果DetectionResult与GroundTruth的交集比上它们的并集,如下图:

蓝色的框是:GroundTruth

黄色的框是:DetectionResult

绿色的框是:DetectionResult ⋂GroundTruth

红色的框是:DetectionResult ⋃GroundTruth

python:目标检测模型预测准确度计算方式(基于IoU)


python:目标检测模型预测准确度计算方式(基于IoU)


基本思路是先读取原来图中标记的框信息,对每一张图,把所需要的那一个类别的框拿出来,与测试集上识别出来的框进行比较,计算IoU,选择最大的值作为当前框的IoU值,然后通过设定的阈值(漏检0,0.3,0.5,0.7)来进行比较统计,最后得到每个阈值下的所有的判定为正确检测(IoU值大于阈值)的框的数量,然后与原本的标记框的数量一起计算准确度。

其中计算IoU的时候是重新构建一个背景为0的图,设定框所在的位置为1,分别利用原本标注的框和测试识别的框来构建两个这样的图,两者相加就能够让重叠的部分变成2,于是就可以知道重叠部分的大小(交集),从而计算IoU

构建代码如下:

#读取txt-标准txt为基准-分类别求阈值-阈值为0. 0.3 0.5 0.7的统计
import glob
import os
import numpy as np

#设定的阈值
threshold1=0.3
threshold2=0.5
threshold3=0.7

#阈值计数器
counter0=0
counter1=0
counter2=0
counter3=0

stdtxt=''#标注txt路径
testtxt=''#测试txt路径

txtlist=glob.glob(r'%s\*.txt' %stdtxt)#获取所有txt文件
for path in txtlist:#对每个txt操作

  txtname=os.path.basename(path)[:-4]#获取txt文件名
  label=1
  eachtxt=np.loadtxt(path) #读取文件
  for line in eachtxt:
    if line[0]==label:
      #构建背景为0框为1的图
      map1=np.zeros((960,1280))
      map1[line[2]:(line[2]+line[4]),line[1]:(line[1]+line[3])]=1

      testfile=np.loadtxt(testtxt + txtname + '.txt')
      c=0
      IoU_list=[]#用来存储所有IoU的集合
      for tline in testfile:#对测试txt的每行进行操作
        if tline[0]==label:
          c=c+1
          map2=np.zeros((960,1280))
          map2[tline[2]:(tline[2]+tline[4]),tline[1]:(tline[1]+tline[3])]=1
          map3=map1+map2
          a=0
          for i in map3:
            if i==2:
              a=a+1
          IoU=a/(line[3]*line[4]+tline[3]*tline[4]-a)#计算IoU
          IoU_list.append(IoU)#添加到集合尾部

      threshold=max(IoU_list)#阈值取最大的
      #阈值统计
      if threshold>=threshold3:
        counter3=counter3+1
      elif threshold>=threshold2:
        counter2=counter2+1
      elif threshold>=threshold1:
        counter1=counter1+1
      elif threshold<threshold1:#漏检
        counter0=counter0+1

以上这篇python:@R_502_292@模型预测准确度计算方式(基于IoU)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

原文链接:https://www.f2er.com/python/535059.html

猜你在找的Python相关文章