Python 是一种代表简单思想的语言,其语法相对简单,很容易上手。不过,如果就此小视 Python 语法的精妙和深邃,那就大错特错了。本文精心筛选了最能展现 Python 语法之精妙的十个知识点,并附上详细的实例代码。如能在实战中融会贯通、灵活使用,必将使代码更为精炼、高效,同时也会极大提升代码B格,使之看上去更老练,读起来更优雅。
1. for - else
什么?不是 if 和 else 才是原配吗?No,你可能不知道,else 是个脚踩两只船的家伙,for 和 else 也是一对,而且是合法的。十大装B语法,for-else 绝对算得上南无湾!不信,请看:
>>> for i in [1,2,3,4]: print(i) else: print(i,'我是else') 1 2 3 4 4 我是else
如果在 for 和 else 之间(循环体内)有第三者 if 插足,也不会影响 for 和 else 的关系。因为 for 的级别比 if 高,else 又是一个攀附权贵的家伙,根本不在乎是否有 if,以及是否执行了满足 if 条件的语句。else 的眼里只有 for,只要 for 顺利执行完毕,else 就会屁颠儿屁颠儿地跑一遍:
>>> for i in [1,4]: if i > 2: print(i) else: print(i,'我是else') 3 4 4 我是else
那么,如何拆散 for 和 else 这对冤家呢?只有当 for 循环被 break 语句中断之后,才会跳过 else 语句:
>>> for i in [1,4]: if i>2: print(i) break else: print(i,'我是else') 3
2. 一颗星(*)和两颗星(**)
有没有发现,星(*)真是一个神奇的符号!想一想,没有它,C语言还有啥好玩的?同样,因为有它,Python 才会如此的仪态万方、风姿绰约、楚楚动人!Python 函数支持默认参数和可变参数,一颗星表示不限数量的单值参数,两颗星表示不限数量的键值对参数。
我们还是举例说明吧:设计一个函数,返回多个输入数值的和。我们固然可以把这些输入数值做成一个list传给函数,但这个方法,远没有使用一颗星的可变参数来得优雅:
>>> def multi_sum(*args): s = 0 for item in args: s += item return s >>> multi_sum(3,4,5) 12
Python 函数允许同时全部或部分使用固定参数、默认参数、单值(一颗星)可变参数、键值对(两颗星)可变参数,使用时必须按照前述顺序书写。
>>> def do_something(name,age,gender='男',*args,**kwds): print('姓名:%s,年龄:%d,性别:%s'%(name,gender)) print(args) print(kwds) >>> do_something('xufive',50,'男',175,75,math=99,english=90) 姓名:xufive,年龄:50,性别:男 (175,75) {'math': 99,'english': 90}
此外,一颗星和两颗星还可用于列表、元组、字典的解包,看起来更像C语言:
>>> a = (1,3) >>> print(a) (1,3) >>> print(*a) 1 2 3 >>> b = [1,3] >>> print(b) [1,3] >>> print(*b) 1 2 3 >>> c = {'name':'xufive','age':51} >>> print(c) {'name': 'xufive','age': 51} >>> print(*c) name age >>> print('name:{name},age:{age}'.format(**c)) name:xufive,age:51
3. 三元表达式
熟悉 C/C++ 的程序员,初上手 python 时,一定会怀念经典的三元操作符,因为想表达同样的思想,用python 写起来似乎更麻烦。比如:
>>> y = 5 >>> if y < 0: print('y是一个负数') else: print('y是一个非负数') y是一个非负数
其实,python 是支持三元表达式的,只是稍微怪异了一点,类似于我们山东人讲话。比如,山东人最喜欢用倒装句:打球去吧,要是不下雨的话;下雨,咱就去自习室。翻译成三元表达式就是:
打球去吧 if 不下雨 else 去自习室
来看看三元表达式具体的使用:
>>> y = 5 >>> print('y是一个负数' if y < 0 else 'y是一个非负数') y是一个非负数
python 的三元表达式也可以用来赋值:
>>> y = 5 >>> x = -1 if y < 0 else 1 >>> x 1
4. with - as
with 这个词儿,英文里面不难翻译,但在 Python 语法中怎么翻译,我还真想不出来,大致上是一种上下文管理协议。作为初学者,不用关注 with 的各种方法以及机制如何,只需要了解它的应用场景就可以了。with 语句适合一些事先需要准备,事后需要处理的任务,比如,文件操作,需要先打开文件,操作完成后需要关闭文件。如果不使用with,文件操作通常得这样:
fp = open(r"D:\jb51\Column\temp\mpmap.py",'r') try: contents = fp.readlines() finally: fp.close()
如果使用 with - as,那就优雅多了:
>>> with open(r"D:\jb51\Column\temp\mpmap.py",'r') as fp: contents = fp.readlines()
5. 列表推导式
在各种稀奇古怪的语法中,列表推导式的使用频率应该时最高的,对于代码的简化效果也非常明显。比如,求列表各元素的平方,通常应该这样写(当然也有其他写法,比如使用map函数):
>>> a = [1,5] >>> result = list() >>> for i in a: result.append(i*i) >>> result [1,9,16,25]
如果使用列表推导式,看起来就舒服多了:
>>> a = [1,5] >>> result = [i*i for i in a] >>> result [1,25]
事实上,推导式不仅支持列表,也支持字典、集合、元组等对象。有兴趣的话,可以自行研究。我有一篇博文《一行 Python 代码能实现什么丧心病狂的功能?》,里面的例子,都是列表推导式实现的。
6. 列表索引的各种骚操作
Python 引入负整数作为数组的索引,这绝对是喜大普奔之举。想想看,在C/C++中,想要数组最后一个元素,得先取得数组长度,减一之后做索引,严重影响了思维的连贯性。Python语言之所以获得成功,我个人觉得,在诸多因素里面,列表操作的便捷性是不容忽视的一点。请看:
>>> a = [0,1,5] >>> a[2:4] [2,3] >>> a[3:] [3,5] >>> a[1:] [1,5] >>> a[:] [0,5] >>> a[::2] [0,4] >>> a[1::2] [1,5] >>> a[-1] 5 >>> a[-2] 4 >>> a[1:-1] [1,4] >>> a[::-1] [5,0]
如果说,这些你都很熟悉,也经常用,那么接下来这个用法,你一定会感觉很神奇:
>>> a = [0,5] >>> b = ['a','b'] >>> a[2:2] = b >>> a [0,'a','b',5] >>> a[3:6] = b >>> a [0,5]
7. lambda函数
lambda 听起来很高大上,其实就是匿名函数(了解js的同学一定很熟悉匿名函数)。匿名函数的应用场景是什么呢?就是仅在定义匿名函数的地方使用这个函数,其他地方用不到,所以就不需要给它取个阿猫阿狗之类的名字了。下面是一个求和的匿名函数,输入参数有两个,x和y,函数体就是x+y,省略了return关键字。
>>> lambda x,y: x+y <function <lambda> at 0x000001B2DE5BD598> >>> (lambda x,y: x+y)(3,4) # 因为匿名函数没有名字,使用的时候要用括号把它包起来
匿名函数一般不会单独使用,而是配合其他方法,为其他方法提供内置的算法或判断条件。比如,使用排序函数sorted对多维数组或者字典排序时,就可以指定排序规则。
>>> a = [{'name':'B','age':50},{'name':'A','age':30},{'name':'C','age':40}] >>> sorted(a,key=lambda x:x['name']) # 按姓名排序 [{'name': 'A','age': 30},{'name': 'B','age': 50},{'name': 'C','age': 40}] >>> sorted(a,key=lambda x:x['age']) # 按年龄排序 [{'name': 'A','age': 40},'age': 50}]
再举一个数组元素求平方的例子,这次用map函数:
>>> a = [1,3] >>> for item in map(lambda x:x*x,a): print(item,end=',') 1,
8. yield 以及生成器和迭代器
yield 这词儿,真不好翻译,翻词典也没用。我干脆就读作“一爱得”,算是外来词汇吧。要理解 yield,得先了解 generator(生成器)。要了解generator,得先知道 iterator(迭代器)。哈哈哈,绕晕了吧?算了,我还是说白话吧。
话说py2时代,range()返回的是list,但如果range(10000000)的话,会消耗大量内存资源,所以,py2又搞了一个xrange()来解决这个问题。py3则只保留了xrange(),但写作range()。xrange()返回的就是一个迭代器,它可以像list那样被遍历,但又不占用多少内存。generator(生成器)是一种特殊的迭代器,只能被遍历一次,遍历结束,就自动消失了。总之,不管是迭代器还是生成器,都是为了避免使用list,从而节省内存。那么,如何得到迭代器和生成器呢?
python内置了迭代函数 iter,用于生成迭代器,用法如下:
>>> a = [1,3] >>> a_iter = iter(a) >>> a_iter <list_iterator object at 0x000001B2DE434BA8> >>> for i in a_iter: print(i,
yield 则是用于构造生成器的。比如,我们要写一个函数,返回从0到某正整数的所有整数的平方,传统的代码写法是这样的:
>>> def get_square(n): result = list() for i in range(n): result.append(pow(i,2)) return result >>> print(get_square(5)) [0,16]
但是如果计算1亿以内的所有整数的平方,这个函数的内存开销会非常大,这是 yield 就可以大显身手了:
>>> def get_square(n): for i in range(n): yield(pow(i,2)) >>> a = get_square(5) >>> a <generator object get_square at 0x000001B2DE5CACF0> >>> for i in a: print(i,') 0,
如果再次遍历,则不会有输出了。
9. 装饰器
刚弄明白迭代器和生成器,这又来个装饰器,Python 咋这么多器呢?的确,Python 为我们提供了很多的武器,装饰器就是最有力的武器之一。装饰器很强大,我在这里尝试从需求的角度,用一个简单的例子,说明装饰器的使用方法和制造工艺。
假如我们需要定义很多个函数,在每个函数运行的时候要显示这个函数的运行时长,解决方案有很多。比如,可以在调用每个函数之前读一下时间戳,每个函数运行结束后再读一下时间戳,求差即可;也可以在每个函数体内的开始和结束位置上读时间戳,最后求差。不过,这两个方法,都没有使用装饰器那么简单、优雅。下面的例子,很好地展示了这一点。
>>> import time >>> def timer(func): def wrapper(*args,**kwds): t0 = time.time() func(*args,**kwds) t1 = time.time() print('耗时%0.3f'%(t1-t0,)) return wrapper >>> @timer def do_something(delay): print('函数do_something开始') time.sleep(delay) print('函数do_something结束') >>> do_something(3) 函数do_something开始 函数do_something结束 耗时3.077
timer() 是我们定义的装饰器函数,使用@把它附加在任何一个函数(比如do_something)定义之前,就等于把新定义的函数,当成了装饰器函数的输入参数。运行 do_something() 函数,可以理解为执行了timer(do_something) 。细节虽然复杂,不过这么理解不会偏差太大,且更易于把握装饰器的制造和使用。
10. 巧用断言assert
所谓断言,就是声明表达式的布尔值必须为真的判定,否则将触发 AssertionError 异常。严格来讲,assert是调试手段,不宜使用在生产环境中,但这不影响我们用断言来实现一些特定功能,比如,输入参数的格式、类型验证等。
>>> def i_want_to_sleep(delay): assert(isinstance(delay,(int,float))),'函数参数必须为整数或浮点数' print('开始睡觉') time.sleep(delay) print('睡醒了') >>> i_want_to_sleep(1.1) 开始睡觉 睡醒了 >>> i_want_to_sleep(2) 开始睡觉 睡醒了 >>> i_want_to_sleep('2') Traceback (most recent call last): File "<pyshell#247>",line 1,in <module> i_want_to_sleep('2') File "<pyshell#244>",line 2,in i_want_to_sleep assert(isinstance(delay,'函数参数必须为整数或浮点数' AssertionError: 函数参数必须为整数或浮点数