在学习人工智能时,大量的使用了np.random.seed(),利用随机数种子,使得每次生成的随机数相同。
我们带着2个问题来进行下列实验
- np.random.seed()是否一直有效
- np.random.seed(Argument)的参数作用?
例子1
import numpy as np if __name__ == '__main__': i = 0 while (i < 6): if (i < 3): np.random.seed(0) print(np.random.randn(1,5)) else: print(np.random.randn(1,5)) pass i += 1 print("-------------------") i = 0 while (i < 2): print(np.random.randn(1,5)) i += 1 print(np.random.randn(2,5)) print("---------重置----------") np.random.seed(0) i = 0 while (i < 8): print(np.random.randn(1,5)) i += 1
可以看出,np.random.seed()对后面的随机数一直有效。
两次利用随机数种子后,即便是跳出循环后,生成随机数的结果依然是相同的。第一次跳出while循环后,进入第二个while循环,得到的两个随机数组确实和加了随机数种子不一样。但是,后面的加了随机数种子的,八次循环中的结果和前面的结果是一样的。说明,随机数种子对后面的结果一直有影响。同时,加了随机数种子以后,后面的随机数组都是按一定的顺序生成的。
例子2,随机数种子参数的作用
import numpy as np if __name__ == '__main__': i = 0 np.random.seed(0) while (i < 3): print(np.random.randn(1,5)) i += 1 i = 0 print("---------------------") np.random.seed(1) i = 0 while (i < 3): print(np.random.randn(1,5)) i += 1
当随机数种子参数为0和1时,生成的随机数结果相同。说明该参数指定了一个随机数生成的起始位置。每个参数对应一个位置。并且在该参数确定后,其后面的随机数的生成顺序也就确定了。