Python内置类型性能分析过程实例

前端之家收集整理的这篇文章主要介绍了Python内置类型性能分析过程实例前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。

这篇文章主要介绍了Python内置类型性能分析过程实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

timeit模块

timeit模块可以用来测试一小段Python代码的执行速度。

Timer是测量小段代码执行速度的类。

class timeit.Timer(stmt='pass',setup='pass',timer=<timer function>)

@H_502_10@
  • stmt参数是要测试的代码语句(statment);
  • setup参数是运行代码时需要的设置;
  • timer参数是一个定时器函数,与平台有关。
  • Timer对象.timeit(number=1000000)

    Timer类中测试语句执行速度的对象方法。number参数是测试代码时的测试次数,默认为1000000次。方法返回执行代码的平均耗时,一个float类型的秒数。

    list的操作测试

    # -*- coding:utf-8 -*-
    
    import timeit
    
    def t2():
      li = []
      for i in range(10000):
        li.insert(0,i)
    
    def t0():
      li = []
      for i in range(10000):
        li.extend([i])
    
    def t1():
      li = []
      for i in range(10000):
        li.append(i)
    
    def t3():
      li = []
      for i in range(10000):
        li += [i]
    
    def t3_1():
      li = []
      for i in range(10000):
        li = li + [i]
    
    def t4():
      li = [ i for i in range(10000)]
    
    def t5():
      li = list(range(10000))
    
    timer2 = timeit.Timer(stmt="t2()",setup="from __main__ import t2")
    print("insert",timer2.timeit(number=1000),"seconds")
    
    timer0 = timeit.Timer(stmt="t0()",setup="from __main__ import t0")
    print("extend",timer0.timeit(number=1000),"seconds")
    
    timer1 = timeit.Timer(stmt="t1()",setup="from __main__ import t1")
    print("append",timer1.timeit(number=1000),"seconds")
    
    timer3 = timeit.Timer(stmt="t3()",setup="from __main__ import t3")
    print("+=",timer3.timeit(number=1000),"seconds")
    
    timer3_1 = timeit.Timer(stmt="t3_1()",setup="from __main__ import t3_1")
    print("+加法",timer3_1.timeit(number=1000),"seconds")
    
    timer4 = timeit.Timer(stmt="t4()",setup="from __main__ import t4")
    print("[i for i in range()]",timer4.timeit(number=1000),"seconds")
    
    timer5 = timeit.Timer(stmt="t5()",setup="from __main__ import t5")
    print("list",timer5.timeit(number=1000),"seconds")
    执行结果:
    
    insert 18.678989517 seconds
    extend 1.022223395000001 seconds
    append 0.6755100029999994 seconds
    += 0.773258104 seconds
    +加法 126.929554195 seconds
    [i for i in range()] 0.36483252799999377 seconds
    list 0.19607099800001038 seconds

    pop操作测试

    x = range(2000000)
    pop_zero = Timer("x.pop(0)","from __main__ import x")
    print("pop_zero ",pop_zero.timeit(number=1000),"seconds")
    
    x = range(2000000)
    pop_end = Timer("x.pop()","from __main__ import x")
    print("pop_end ",pop_end.timeit(number=1000),"seconds")
    
    # ('pop_zero ',1.9101738929748535,'seconds')
    # ('pop_end ',0.00023603439331054688,'seconds')

    测试pop操作:从结果可以看出,"pop最后一个元素"的效率远远高于"pop第一个元素"

    可以自行尝试下list的append(value)和insert(0,value),即一个后面插入和一个前面插入???

    list内置操作的时间复杂度

    Python内置类型性能分析过程实例

    dict内置操作的时间复杂度

    Python内置类型性能分析过程实例

    以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

    猜你在找的Python相关文章