python-Tensorflow无法分配设备进行操作

前端之家收集整理的这篇文章主要介绍了python-Tensorflow无法分配设备进行操作 前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。

我正在尝试在计算机上运行NVidia’s face generating demo.我正在使用Windows10.我已经下载了源代码,并试图按照页面下方的步骤进行操作.我已经为我的GTX1060安装了最新的NVidia驱动程序,该驱动程序应该是支持cuda功能的设备.我已经安装了Cuda Toolkit和TensorFlow所需的cuDNN SDK.

但是,运行import_example.py脚本时,出现以下错误.谁能告诉我我在做什么错?

   2019-03-19 20:16:26.112574: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your cpu supports instructions that this TensorFlow binary was not compiled to use: AVX2
    WARNING:tensorflow:From C:\Users\me\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow\python\framework\op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.
    Instructions for updating:
    Colocations handled automatically by placer.
    Traceback (most recent call last):
      File "C:\Users\me\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow\python\client\session.py",line 1334,in _do_call
        return fn(*args)
      File "C:\Users\me\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow\python\client\session.py",line 1319,in _run_fn
        options,Feed_dict,fetch_list,target_list,run_Metadata)
      File "C:\Users\me\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow\python\client\session.py",line 1407,in _call_tf_sessionrun
        run_Metadata)
    tensorflow.python.framework.errors_impl.InvalidArgumentError: Cannot assign a device for operation G_paper_1/Run/G_paper_1/latents_in: {{node G_paper_1/Run/G_paper_1/latents_in}}was explicitly assigned to /device:GPU:0 but available devices are [ /job:localhost/replica:0/task:0/device:cpu:0 ]. Make sure the device specification refers to a valid device. The requested device appears to be a GPU,but CUDA is not enabled.
             [[{{node G_paper_1/Run/G_paper_1/latents_in}}]]

    During handling of the above exception,another exception occurred:

    Traceback (most recent call last):
      File ".\import_example.py",line 21,in <module>
        images = Gs.run(latents,labels)
      File "C:\Users\me\Desktop\progressive_growing_of_gans-master\tfutil.py",line 668,in run
        mb_out = tf.get_default_session().run(out_expr,dict(zip(self.input_templates,mb_in)))
      File "C:\Users\me\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow\python\client\session.py",line 929,in run
        run_Metadata_ptr)
      File "C:\Users\me\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow\python\client\session.py",line 1152,in _run
        Feed_dict_tensor,options,line 1328,in _do_run
        run_Metadata)
      File "C:\Users\me\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow\python\client\session.py",line 1348,in _do_call
        raise type(e)(node_def,op,message)
    tensorflow.python.framework.errors_impl.InvalidArgumentError: Cannot assign a device for operation G_paper_1/Run/G_paper_1/latents_in: node G_paper_1/Run/G_paper_1/latents_in (defined at C:\Users\me\Desktop\progressive_growing_of_gans-master\tfutil.py:508) was explicitly assigned to /device:GPU:0 but available devices are [ /job:localhost/replica:0/task:0/device:cpu:0 ]. Make sure the device specification refers to a valid device. The requested device appears to be a GPU,but CUDA is not enabled.
             [[node G_paper_1/Run/G_paper_1/latents_in (defined at C:\Users\me\Desktop\progressive_growing_of_gans-master\tfutil.py:508) ]]

    Caused by op 'G_paper_1/Run/G_paper_1/latents_in',defined at:
      File ".\import_example.py",line 645,in run
        out_expr = self.get_output_for(*in_split[gpu],return_as_list=True,**dynamic_kwargs)
      File "C:\Users\me\Desktop\progressive_growing_of_gans-master\tfutil.py",line 508,in get_output_for
        named_inputs = [tf.identity(expr,name=name) for expr,name in zip(in_expr,self.input_names)]
      File "C:\Users\me\Desktop\progressive_growing_of_gans-master\tfutil.py",in <listcomp>
        named_inputs = [tf.identity(expr,self.input_names)]
      File "C:\Users\me\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow\python\util\dispatch.py",line 180,in wrapper
        return target(*args,**kwargs)
      File "C:\Users\me\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow\python\ops\array_ops.py",line 81,in identity
        ret = gen_array_ops.identity(input,name=name)
      File "C:\Users\me\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow\python\ops\gen_array_ops.py",line 4537,in identity
        "Identity",input=input,name=name)
      File "C:\Users\me\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow\python\framework\op_def_library.py",line 788,in _apply_op_helper
        op_def=op_def)
      File "C:\Users\me\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow\python\util\deprecation.py",line 507,in new_func
        return func(*args,**kwargs)
      File "C:\Users\me\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow\python\framework\ops.py",line 3300,in create_op
        op_def=op_def)
      File "C:\Users\me\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow\python\framework\ops.py",line 1801,in __init__
        self._traceback = tf_stack.extract_stack()

    InvalidArgumentError (see above for traceback): Cannot assign a device for operation G_paper_1/Run/G_paper_1/latents_in: node G_paper_1/Run/G_paper_1/latents_in (defined at C:\Users\me\Desktop\progressive_growing_of_gans-master\tfutil.py:508) was explicitly assigned to /device:GPU:0 but available devices are [ /job:localhost/replica:0/task:0/device:cpu:0 ]. Make sure the device specification refers to a valid device. The requested device appears to be a GPU,but CUDA is not enabled.
             [[node G_paper_1/Run/G_paper_1/latents_in (defined at C:\Users\me\Desktop\progressive_growing_of_gans-master\tfutil.py:508) ]]
最佳答案

Cannot assign a device for operation
G_paper_1/Run/G_paper_1/latents_in: {{node
G_paper_1/Run/G_paper_1/latents_in}}was explicitly assigned to
/device:GPU:0 but available devices are [
/job:localhost/replica:0/task:0/device:cpu:0 ]

您是否安装了tensorflow或tensorflow-gpu?如果要使用GPU,则后者是您想要的.

这也可能是版本兼容性问题.
首先,检查是否安装了nvidia驱动程序:nvidia-smi,您应该得到类似以下的内容

Mon Apr 1 12:30:02 2019       
+------------------------------------------------------+                       
| NVIDIA-SMI 3.295.41   Driver Version: 295.41         |                       
|-------------------------------+----------------------+----------------------+
| Nb.  Name                     | Bus Id        Disp.  | Volatile ECC SB / DB |
| Fan   Temp   Power Usage /Cap | Memory Usage         | GPU Util. Compute M. |
|===============================+======================+======================|
| 0.  GeForce GTX 580           | 0000:25:00.0  N/A    |       N/A        N/A |
|  54%   70 C  N/A   N/A /  N/A |  25%  383MB / 1535MB |  N/A      Default    |
|-------------------------------+----------------------+----------------------|
| Compute processes:                                               GPU Memory |
|  GPU  PID     Process name                                       Usage      |
|=============================================================================|
|  0.           Not Supported                                                 |
+-----------------------------------------------------------------------------+

之后,使用nvcc –version检查您拥有的cuda版本.例:

nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2016 NVIDIA Corporation
Built on Mon_Apr__1_12:34:01_CDT_2016
Cuda compilation tools,release 8.0,V8.0.44

最终,检查是否已安装兼容版本的python / tensorflow / cuda.为此,对于大多数人来说,使用table作为参考似乎可行.

安装驱动程序后,不要忘记重启!

猜你在找的Python相关文章