python-Keras中按功能进行缩放和移动(FiLM层)

前端之家收集整理的这篇文章主要介绍了python-Keras中按功能进行缩放和移动(FiLM层) 前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。

我正在尝试对Keras张量(带有TF后端)应用按功能进行特征缩放和平移(也称为仿射变换-该概念在this distill article的命名部分中进行了描述).

我想转换的张量称为X,是卷积层的输出,其形状为(B,H,W,F),表示(批量大小,高度,宽度,特征图的数量).

我变换的参数是二维(B,F)张量,即beta和γ.

我想要X *伽玛beta,或更具体地说,

for b in range(B):
    for f in range(F):
        X[b,:,f] = X[b,f] * gamma[b,f] + beta[b,f]

但是,这两种方法都无法在Keras中使用.第二个,按元素分配,由于

TypeError: 'Tensor' object does not support item assignment

并且应该是相当低效的.

第一次失败的方式对我来说更神秘,但我的猜测是这是广播的问题.在下面的完整代码回溯中,您可以看到我的尝试.

需要注意的两件事是,该错误仅在训练时发生(而不是在编译时发生),并且至少根据模型摘要,似乎从未使用过“ transform_vars”输入.

关于如何实现这一点的任何想法?

import numpy as np
import keras as ks
import keras.backend as K

print(ks.__version__)

# Load example data (here MNIST)
from keras.datasets import mnist
(x_img_train,y_train),_ = mnist.load_data()
x_img_train = np.expand_dims(x_img_train,-1)

# Generator some data to use for transformations
n_transform_vars = 10
x_transform_train = np.random.randn(y_train.shape[0],n_transform_vars)

# Inputs
input_transform = ks.layers.Input(x_transform_train.shape[1:],name='transform_vars')
input_img = ks.layers.Input(x_img_train.shape[1:],name='imgs')

# Number of feature maps
n_features = 32

# Create network that calculates the transformations
tns_transform = ks.layers.Dense(2 * n_features)(input_transform)
tns_transform = ks.layers.Reshape((2,32))(tns_transform)

# Do a convolution
tns_conv = ks.layers.Conv2D(filters=n_features,kernel_size=3,padding='same')(input_img)

# Apply batch norm
bn = ks.layers.BatchNormalization()

# Freeze the weights of the batch norm,as they are going to be overwritten
bn.trainable = False

# Apply
tns_conv = bn(tns_conv)

# Attempt to apply the affine transformation
def scale_and_shift(x):
    return x * tns_transform[:,0] + tns_transform[:,1]

tns_conv = ks.layers.Lambda(scale_and_shift,name='affine_transform')(tns_conv)
tns_conv = ks.layers.Flatten()(tns_conv)

output = ks.layers.Dense(1)(tns_conv)

model = ks.models.Model(inputs=[input_img,input_transform],outputs=output)
model.compile(loss='mse',optimizer='Adam')
model.summary()

model.fit([x_img_train,x_transform_train],y_train,batch_size=8)

这导致

2.2.4
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
imgs (InputLayer)            (None,28,1)         0         
_________________________________________________________________
conv2d_25 (Conv2D)           (None,32)        320       
_________________________________________________________________
batch_normalization_22 (Batc (None,32)        128       
_________________________________________________________________
affine_transform (Lambda)    (None,32)        0         
_________________________________________________________________
flatten_6 (Flatten)          (None,25088)             0         
_________________________________________________________________
dense_33 (Dense)             (None,1)                 25089     
=================================================================
Total params: 25,537
Trainable params: 25,409
Non-trainable params: 128
_________________________________________________________________
Epoch 1/1
---------------------------------------------------------------------------
InvalidArgumentError                      Traceback (most recent call last)
<ipython-input-35-14724d9432ef> in <module>
     49 model.summary()
     50 
---> 51 model.fit([x_img_train,batch_size=8)

~/miniconda3/envs/py3/lib/python3.6/site-packages/keras/engine/training.py in fit(self,x,y,batch_size,epochs,verbose,callbacks,validation_split,validation_data,shuffle,class_weight,sample_weight,initial_epoch,steps_per_epoch,validation_steps,**kwargs)
   1037                                         initial_epoch=initial_epoch,1038                                         steps_per_epoch=steps_per_epoch,-> 1039                                         validation_steps=validation_steps)
   1040 
   1041     def evaluate(self,x=None,y=None,~/miniconda3/envs/py3/lib/python3.6/site-packages/keras/engine/training_arrays.py in fit_loop(model,f,ins,out_labels,val_f,val_ins,callback_metrics,validation_steps)
    197                     ins_batch[i] = ins_batch[i].toarray()
    198 
--> 199                 outs = f(ins_batch)
    200                 outs = to_list(outs)
    201                 for l,o in zip(out_labels,outs):

~/miniconda3/envs/py3/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py in __call__(self,inputs)
   2713                 return self._legacy_call(inputs)
   2714 
-> 2715             return self._call(inputs)
   2716         else:
   2717             if py_any(is_tensor(x) for x in inputs):

~/miniconda3/envs/py3/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py in _call(self,inputs)
   2673             fetched = self._callable_fn(*array_vals,run_Metadata=self.run_Metadata)
   2674         else:
-> 2675             fetched = self._callable_fn(*array_vals)
   2676         return fetched[:len(self.outputs)]
   2677 

~/miniconda3/envs/py3/lib/python3.6/site-packages/tensorflow/python/client/session.py in __call__(self,*args,**kwargs)
   1437           ret = tf_session.TF_SessionRunCallable(
   1438               self._session._session,self._handle,args,status,-> 1439               run_Metadata_ptr)
   1440         if run_Metadata:
   1441           proto_data = tf_session.TF_GetBuffer(run_Metadata_ptr)

~/miniconda3/envs/py3/lib/python3.6/site-packages/tensorflow/python/framework/errors_impl.py in __exit__(self,type_arg,value_arg,traceback_arg)
    526             None,None,527             compat.as_text(c_api.TF_Message(self.status.status)),--> 528             c_api.TF_GetCode(self.status.status))
    529     # Delete the underlying status object from memory otherwise it stays alive
    530     # as there is a reference to status from this from the traceback due to

InvalidArgumentError: Incompatible shapes: [8,32] vs. [8,32]
     [[{{node training_5/Adam/gradients/affine_transform_18/mul_grad/BroadcastGradientArgs}} = BroadcastGradientArgs[T=DT_INT32,_class=["loc:@training_5/Adam/gradients/batch_normalization_22/cond/Merge_grad/cond_grad"],_device="/job:localhost/replica:0/task:0/device:cpu:0"](training_5/Adam/gradients/affine_transform_18/mul_grad/Shape,training_5/Adam/gradients/affine_transform_18/mul_grad/Shape_1)]]
最佳答案
我设法将仿射变换实现为自定义层(在文献中也称为FiLM层):

class FiLM(ks.layers.Layer):

    def __init__(self,widths=[64,64],activation='leakyrelu',initialization='glorot_uniform',**kwargs):
        self.widths = widths
        self.activation = activation
        self.initialization = initialization
        super(FiLM,self).__init__(**kwargs)

    def build(self,input_shape):
        assert isinstance(input_shape,list)
        feature_map_shape,FiLM_vars_shape = input_shape
        self.n_feature_maps = feature_map_shape[-1]
        self.height = feature_map_shape[1]
        self.width = feature_map_shape[2]

        # Collect trainable weights
        trainable_weights = []

        # Create weights for hidden layers
        self.hidden_dense_layers = []
        for i,width in enumerate(self.widths):
            dense = ks.layers.Dense(width,kernel_initializer=self.initialization,name=f'FiLM_dense_{i}')
            if i==0:
                build_shape = FiLM_vars_shape[:2]
            else:
                build_shape = (None,self.widths[i-1])
            dense.build(build_shape)
            trainable_weights += dense.trainable_weights
            self.hidden_dense_layers.append(dense)

        # Create weights for output layer
        self.output_dense = ks.layers.Dense(2 * self.n_feature_maps,# assumes channel_last
                                            kernel_initializer=self.initialization,name=f'FiLM_dense_output')
        self.output_dense.build((None,self.widths[-1]))
        trainable_weights += self.output_dense.trainable_weights

        # Pass on all collected trainable weights
        self._trainable_weights = trainable_weights

        super(FiLM,self).build(input_shape)

    def call(self,x):
        assert isinstance(x,list)
        conv_output,FiLM_vars = x

        # Generate FiLM outputs
        tns = FiLM_vars
        for i in range(len(self.widths)):
            tns = self.hidden_dense_layers[i](tns)
            tns = get_activation(activation=self.activation)(tns)
        FiLM_output = self.output_dense(tns)

        # Duplicate in order to apply to entire feature maps
        # Taken from https://github.com/GuessWhatGame/neural_toolBox/blob/master/film_layer.py
        FiLM_output = K.expand_dims(FiLM_output,axis=[1])
        FiLM_output = K.expand_dims(FiLM_output,axis=[1])
        FiLM_output = K.tile(FiLM_output,[1,self.height,self.width,1])

        # Split into gammas and betas
        gammas = FiLM_output[:,:self.n_feature_maps]
        betas = FiLM_output[:,self.n_feature_maps:]

        # Apply affine transformation
        return (1 + gammas) * conv_output + betas

    def compute_output_shape(self,list)
        return input_shape[0]

它取决于函数get_activation,该函数实际上仅返回Keras激活实例.您可以在下面看到完整的工作示例.

注意,该层在该层本身中对transform_vars进行处理.如果要在另一个网络中处理这些变量,请参见下面的编辑.

import numpy as np
import keras as ks
import keras.backend as K


def get_activation(tns=None,activation='relu'):
    '''
    Adds an activation layer to a graph.

    Args :
        tns :
            *Keras tensor or None*

            Input tensor. If not None,then the graph will be connected through
            it,and a tensor will be returned. If None,the activation layer
            will be returned.
        activation :
            *str,optional (default='relu')*

            The name of an activation function.
            One of 'relu','leakyrelu','prelu','elu','mrelu' or 'swish',or anything that Keras will recognize as an activation function
            name.

    Returns :
        *Keras tensor or layer instance* (see tns argument)
    '''

    if activation == 'relu':
        act = ks.layers.ReLU()

    elif activation == 'leakyrelu':
        act = ks.layers.LeakyReLU()

    elif activation == 'prelu':
        act = ks.layers.PReLU()

    elif activation == 'elu':
        act = ks.layers.ELU()

    elif activation == 'swish':
        def swish(x):
            return K.sigmoid(x) * x
        act = ks.layers.Activation(swish)

    elif activation == 'mrelu':
        def mrelu(x):
            return K.minimum(K.maximum(1-x,0),K.maximum(1+x,0))
        act = ks.layers.Activation(mrelu)

    elif activation == 'gaussian':
        def gaussian(x):
            return K.exp(-x**2)
        act = ks.layers.Activation(gaussian)

    elif activation == 'flipped_gaussian':
        def flipped_gaussian(x):
            return 1 - K.exp(-x**2)
        act = ks.layers.Activation(flipped_gaussian)

    else:
        act = ks.layers.Activation(activation)

    if tns is not None:
        return act(tns)
    else:
        return act


class FiLM(ks.layers.Layer):

    def __init__(self,list)
        return input_shape[0]


print(ks.__version__)

# Load example data (here MNIST)
from keras.datasets import mnist
(x_img_train,name='imgs')

# Number of feature maps
n_features = 32

# Do a convolution
tns = ks.layers.Conv2D(filters=n_features,as they are going to be overwritten
bn.trainable = False

# Apply batch norm
tns = bn(tns)

# Apply FiLM layer
tns = FiLM(widths=[12,24],name='FiLM_layer')([tns,input_transform])

# Make 1D output
tns = ks.layers.Flatten()(tns)
output = ks.layers.Dense(1)(tns)

# Compile and plot
model = ks.models.Model(inputs=[input_img,optimizer='Adam')
model.summary()
ks.utils.plot_model(model,'./model_with_FiLM.png')

# Train
model.fit([x_img_train,batch_size=8)

编辑:
这是“非活动” FiLM层,它吸收了另一个网络(FiLM生成器)的预测,并将其用作伽玛和贝塔系数.

这样做是等效的,但比较简单,因为您将所有可训练的重量都保留在FiLM生成器中,从而确保了重量共享.

class FiLM(ks.layers.Layer):

    def __init__(self,**kwargs):
        super(FiLM,FiLM_tns_shape = input_shape
        self.height = feature_map_shape[1]
        self.width = feature_map_shape[2]
        self.n_feature_maps = feature_map_shape[-1]
        assert(int(2 * self.n_feature_maps)==FiLM_tns_shape[1])
        super(FiLM,FiLM_tns = x

        # Duplicate in order to apply to entire feature maps
        # Taken from https://github.com/GuessWhatGame/neural_toolBox/blob/master/film_layer.py
        FiLM_tns = K.expand_dims(FiLM_tns,axis=[1])
        FiLM_tns = K.expand_dims(FiLM_tns,axis=[1])
        FiLM_tns = K.tile(FiLM_tns,1])

        # Split into gammas and betas
        gammas = FiLM_tns[:,:self.n_feature_maps]
        betas = FiLM_tns[:,list)
        return input_shape[0]
原文链接:https://www.f2er.com/python/533230.html

猜你在找的Python相关文章